Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Stephen A. Fletcher x
Clear All Modify Search
Restricted access

Joseph P. Herbert, Sidish S. Venkataraman, Ali H. Turkmani, Liang Zhu, Marcia L. Kerr, Rajan P. Patel, Irma T. Ugalde, Stephen A. Fletcher, David I. Sandberg, Charles S. Cox Jr., Ryan S. Kitagawa, Arthur L. Day and Manish N. Shah

OBJECTIVE

The objective of this study was to assess the incidence, diagnosis, and treatment of pediatric blunt cerebrovascular injury (BCVI) at a busy Level 1 trauma center and to develop a tool for accurately predicting pediatric BCVI and the need for diagnostic testing.

METHODS

This is a retrospective cohort study of a prospectively collected database of pediatric patients who had sustained blunt trauma (patient age range 0–15 years) and were treated at a Level 1 trauma center between 2005 and 2015. Digital subtraction angiography, MR angiography, or CT angiography was used to confirm BCVI. Recently, the Utah score has emerged as a screening tool specifically targeted toward evaluating BCVI risk in the pediatric population. Using logistical regression and adding mechanism of injury as a logit, the McGovern score was able to use the Utah score as a starting point to create a more sensitive screening tool to identify which pediatric trauma patients should receive angiographic imaging due to a high risk for BCVI.

RESULTS

A total of 12,614 patients (mean age 6.6 years) were admitted with blunt trauma and prospectively registered in the trauma database. Of these, 460 (3.6%) patients underwent angiography after blunt trauma: 295 (64.1%), 107 (23.3%), 6 (1.3%), and 52 (11.3%) patients underwent CT angiography, MR angiography, digital subtraction angiography, and a combination of imaging modalities, respectively. The BCVI incidence (n = 21; 0.17%) was lower than that in a comparable adult group (p < 0.05). The mean patient was age 10.4 years with a mean follow-up of 7.5 months. Eleven patients (52.4%) were involved in a motor vehicle collision, with a mean Glasgow Coma Scale score of 8.6. There were 8 patients (38.1%) with carotid canal fracture, 6 patients (28.6%) with petrous bone fracture, and 2 patients (9.5%) with infarction on initial presentation. Eight patients (38.1%) were managed with observation alone. The Denver, modified Memphis, Eastern Association for the Surgery of Trauma (EAST), and Utah scores, which are the currently used screening tools for BCVI, misclassified 6 (28.6%), 6 (28.6%), 7 (33.3%), and 10 (47.6%) patients with BCVI, respectively, as “low risk” and not in need of subsequent angiographic imaging. By incorporating the mechanism of injury into the score, the McGovern score only misclassified 4 (19.0%) children, all of whom were managed conservatively with no treatment or aspirin.

CONCLUSIONS

With a low incidence of pediatric BCVI and a nonsurgical treatment paradigm, a more conservative approach than the Biffl scale should be adopted. The Denver, modified Memphis, EAST, and Utah scores did not accurately predict BCVI in our equally large cohort. The McGovern score is the first BCVI screening tool to incorporate the mechanism of injury into its screening criteria, thereby potentially allowing physicians to minimize unnecessary radiation and determine which high-risk patients are truly in need of angiographic imaging.

Restricted access

Lovepreet K. Mann, Jong H. Won, Nicholaus J. Trenton, Jeannine Garnett, Saul Snowise, Stephen A. Fletcher, Scheffer C. G. Tseng, Michael R. Diehl and Ramesha Papanna

OBJECTIVE

Despite significant improvement in spinal cord function after in utero spina bifida (SB) repair compared with traditional postnatal repair, over half of the children who undergo this procedure do not benefit completely. This lack of benefit has been attributed to closure methods of the defect, with subsequent spinal cord tethering at the repair site. Hence, a regenerative patch or material with antiinflammatory and anti-scarring properties may alleviate comorbidities with improved outcomes. The authors’ primary objective was therefore to compare cryopreserved human umbilical cord (HUC) versus acellular dermal matrix (ADM) patches for regenerative repair of in utero SB lesions in an animal model.

METHODS

In vivo studies were conducted in retinoic acid–induced SB defects in fetuses of Sprague-Dawley rats. HUC or ADM patches were sutured over the SB defects at a gestational age of 20 days. Repaired SB defect tissues were harvested after 48–52 hours. Tissue sections were immunofluorescently stained for the presence of neutrophils, macrophages, keratinocytes, meningeal cells, and astrocytes and for any associated apoptosis. In vitro meningeal or keratinocyte cell coculture experiments with the ADM and HUC patches were performed. All experiments were scored quantitatively in a blinded manner.

RESULTS

Neutrophil counts and apoptotic cells were lower in the HUC-based repair group (n = 8) than in the ADM patch repair group (n = 7). In the HUC patch repair group, keratinocytes were present on the outer surface of the patch, meningeal cells were present on the inner surface of the patch adjacent to the neural placode, and astrocytes were noted to be absent. In the ADM patch repair group, all 3 cell types were present on both surfaces of the patch. In vitro studies showed that human meningeal cells grew preferentially on the mesenchymal side of the HUC patch, whereas keratinocytes showed tropism for the epithelial side, suggesting an inherent HUC-based cell polarity. In contrast, the ADM patch studies showed no polarity and decreased cellular infiltration.

CONCLUSIONS

The HUC patch demonstrated reduced acute inflammation and apoptosis together with superior organization in regenerative cellular growth when compared with the ADM patch, and is therefore likely the better patch material for in utero SB defect repair. These properties may make the HUC biomaterial useful as a “meningeal patch” during spinal cord surgeries, thereby potentially reducing tethering and improving on spinal cord function.