Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Stephanie Holowka x
Clear All Modify Search
Restricted access

Koji Iida, Hiroshi Otsubo, Yuuri Matsumoto, Ayako Ochi, Makoto Oishi, Stephanie Holowka, Elizabeth Pang, Irene Elliott, Shelly K. Weiss, Sylvester H. Chuang, O. Carter Snead III and James T. Rutka

Object

The authors sought to validate magnetoencephalography spike sources (MEGSSs) in neuronavigation during epilepsy surgery in pediatric patients.

Methods

The distributions of MEGSSs in 16 children were defined and classified as clusters (Class I), greater than or equal to 20 MEGSSs with 1 cm or less between MEGSSs; small clusters (Class II), 6 to 19 with 1 cm or less between; and scatters (Class III), less than 6 or greater than 1 cm between spike sources. Using neuronavigation, the MEGSSs were correlated to epileptic zones from intra- and extraoperative electrocorticography (ECoG), surgical procedures, disease entities, and seizure outcomes.

Thirteen patients underwent MEGSSs: nine had clusters; two had small clusters, one with and one without clusters; and three had scatters alone. All 13 had scatters. Clusters localized within and extended from areas of cortical dysplasia and at margins of tumors or cystic lesions. All clusters were colocalized to ECoG-defined epileptic zones. Four of six patients with clusters and/or small clusters underwent complete excisions, and two underwent partial excision with or without multiple subpial transections. In the three patients with scatters alone, ECoG revealed epileptic zones buried within MEGSS areas; these regions of scatters were completely excised and treated with multiple subpial transections. Coexisting scatters were left untreated in nine of 10 patients. Postoperatively, nine of 13 patients were seizure free; the four patients with residual seizures had clusters in unresected eloquent cortex. Three patients in whom no MEGSSs were demonstrated underwent lesionectomies and were seizure free.

Conclusions

Magnetoencephalography spike source clusters indicate an epileptic zone requiring complete excision. Coexisting scatters remote from clusters are nonepileptogenic and do not require excision. Scatters alone, however, should be examined by ECoG; an epileptic zone may exist within these distributions.

Restricted access

Koji Iida, Hiroshi Otsubo, Yuuri Matsumoto, Ayako Ochi, Makoto Oishi, Stephanie Holowka, Elizabeth Pang, Irene Elliott, Shelly K. Weiss, Sylvester H. Chuang, O. Carter Snead III and James T. Rutka

Object. The authors sought to validate magnetoencephalography spike sources (MEGSSs) in neuronavigation during epilepsy surgery in pediatric patients.

Methods. The distributions of MEGSSs in 16 children were defined and classified as clusters (Class I), greater than or equal to 20 MEGSSs with 1 cm or less between MEGSSs; small clusters (Class II), 6 to 19 with 1 cm or less between; and scatters (Class III), less than 6 or greater than 1 cm between spike sources. Using neuronavigation, the MEGSSs were correlated to epileptic zones from intra- and extraoperative electrocorticography (ECoG), surgical procedures, disease entities, and seizure outcomes.

Thirteen patients underwent MEGSSs: nine had clusters; two had small clusters, one with and one without clusters; and three had scatters alone. All 13 had scatters. Clusters localized within and extended from areas of cortical dysplasia and at margins of tumors or cystic lesions. All clusters were colocalized to ECoG-defined epileptic zones. Four of six patients with clusters and/or small clusters underwent complete excisions, and two underwent partial excision with or without multiple subpial transections. In the three patients with scatters alone, ECoG revealed epileptic zones buried within MEGSS areas; these regions of scatters were completely excised and treated with multiple subpial transections. Coexisting scatters were left untreated in nine of 10 patients. Postoperatively, nine of 13 patients were seizure free; the four patients with residual seizures had clusters in unresected eloquent cortex. Three patients in whom no MEGSSs were demonstrated underwent lesionectomies and were seizure free.

Conclusions. Magnetoencephalography spike source clusters indicate an epileptic zone requiring complete excision. Coexisting scatters remote from clusters are nonepileptogenic and do not require excision. Scatters alone, however, should be examined by ECoG; an epileptic zone may exist within these distributions.

Restricted access

Cristina V. Torres, Aria Fallah, George M. Ibrahim, Samuel Cheshier, Hiroshi Otsubo, Ayako Ochi, Sylvester Chuang, O. Carter Snead, Stephanie Holowka and James T. Rutka

Object

Hemispherectomy is an established neurosurgical procedure for medication-resistant epilepsy in children. Despite the effectiveness of this technique, there are patients who do not achieve an optimum outcome after surgery; possible causes of suboptimal results include the presence of bilateral independent epileptogenic foci. Magnetoencephalography (MEG) is an emerging tool that has been found to be useful in the management of lesional and nonlesional epilepsy. The authors analyzed the relative contribution of MEG in patient selection for hemispherectomy.

Methods

The medical records of children undergoing hemispherectomy at the Hospital for Sick Children were reviewed. Those patients who underwent MEG as part of the presurgical evaluation were selected.

Results

Thirteen patients were included in the study. Nine patients were boys. The mean age at the time of surgery was 66 months (range 10–149 months). Seizure etiology was Rasmussen encephalitis in 6 patients, hemimegalencephaly in 2 patients, and cortical dysplasia in 4 patients. In 8 patients, video-EEG and MEG results were consistent to localize the primary epileptogenic hemisphere. In 2 patients, video-EEG lateralized the ictal onset, but MEG showed bilateral spikes. Two patients had bilateral video-EEG and MEG spikes. Engel Class I, II, and IV outcomes were seen in 10, 2, and 1 patients, respectively. In 2 of the patients who had an outcome other than Engel Class I, the MEG clusters were concentrated in the disconnected hemisphere. The third patient had bilateral clusters and potentially independent epileptogenic foci from bilateral cortical dysplasia.

Conclusions

The presence of unilateral MEG spike waves correlated with good outcomes following hemispherectomy. In some cases, MEG provides information that differs from that obtained from video-EEG and conventional MR imaging studies. Further studies with a greater number of patients are needed to assess the role of MEG in the preoperative assessment of candidates for hemispherectomy.

Full access

Erin N. Kiehna, Elysa Widjaja, Stephanie Holowka, O. Carter Snead III, James Drake, Shelly K. Weiss, Ayako Ochi, Eric M. Thompson, Cristina Go, Hiroshi Otsubo, Elizabeth J. Donner and James T. Rutka

OBJECT

Hemispherectomy for unilateral, medically refractory epilepsy is associated with excellent long-term seizure control. However, for patients with recurrent seizures following disconnection, workup and investigation can be challenging, and surgical options may be limited. Few studies have examined the role of repeat hemispherotomy in these patients. The authors hypothesized that residual fiber connections between the hemispheres could be the underlying cause of recurrent epilepsy in these patients. Diffusion tensor imaging (DTI) was used to test this hypothesis, and to target residual connections at reoperation using neuronavigation.

METHODS

The authors identified 8 patients with recurrent seizures following hemispherectomy who underwent surgery between 1995 and 2012. Prolonged video electroencephalography recordings documented persistent seizures arising from the affected hemisphere. In all patients, DTI demonstrated residual white matter association fibers connecting the hemispheres. A repeat craniotomy and neuronavigation-guided targeted disconnection of these residual fibers was performed. Engel class was used to determine outcome after surgery at a minimum of 2 years of follow-up.

RESULTS

Two patients underwent initial hemidecortication and 6 had periinsular hemispherotomy as their first procedures at a median age of 9.7 months. Initial pathologies included hemimegalencephaly (n = 4), multilobar cortical dysplasia (n = 3), and Rasmussen's encephalitis (n = 1). The mean duration of seizure freedom for the group after the initial procedure was 32.5 months (range 6–77 months). In all patients, DTI showed limited but definite residual connections between the 2 hemispheres, primarily across the rostrum/genu of the corpus callosum. The median age at reoperation was 6.8 years (range 1.3–14 years). The average time taken for reoperation was 3 hours (range 1.8–4.3 hours), with a mean blood loss of 150 ml (range 50–250 ml). One patient required a blood transfusion. Five patients are seizure free, and the remaining 3 patients are Engel Class II, with a minimum follow-up of 24 months for the group.

CONCLUSIONS

Repeat hemispherotomy is an option for consideration in patients with recurrent intractable epilepsy following failed surgery for catastrophic epilepsy. In conjunction with other modalities to establish seizure onset zones, advanced MRI and DTI sequences may be of value in identifying patients with residual connectivity between the affected and unaffected hemispheres. Targeted disconnection of these residual areas of connectivity using neuronavigation may result in improved seizure outcomes, with minimal and acceptable morbidity.

Restricted access

Eisha A. Christian, Elysa Widjaja, Ayako Ochi, Hiroshi Otsubo, Stephanie Holowka, Elizabeth Donner, Shelly K. Weiss, Cristina Go, James Drake, O. Carter Snead and James T. Rutka

OBJECTIVE

Small lesions at the depth of the sulcus, such as with bottom-of-sulcus focal cortical dysplasia, are not visible from the surface of the brain and can therefore be technically challenging to resect. In this technical note, the authors describe their method of using depth electrodes as landmarks for the subsequent resection of these exacting lesions.

METHODS

A retrospective review was performed on pediatric patients who had undergone invasive electroencephalography with depth electrodes that were subsequently used as guides for resection in the period between July 2015 and June 2017.

RESULTS

Ten patients (3–15 years old) met the criteria for this study. At the same time as invasive subdural grid and/or strip insertion, between 2 and 4 depth electrodes were placed using a hand-held frameless neuronavigation technique. Of the total 28 depth electrodes inserted, all were found within the targeted locations on postoperative imaging. There was 1 patient in whom an asymptomatic subarachnoid hemorrhage was demonstrated on postprocedural imaging. Depth electrodes aided in target identification in all 10 cases.

CONCLUSIONS

Depth electrodes placed at the time of invasive intracranial electrode implantation can be used to help localize, target, and resect primary zones of epileptogenesis caused by bottom-of-sulcus lesions.

Restricted access

Mony Benifla, Francesco Sala, John Jane Jr., Hiroshi Otsubo, Ayako Ochi, James Drake, Shelly Weiss, Elizabeth Donner, Ayataka Fujimoto, Stephanie Holowka, Elysa Widjaja, O. Carter Snead III, Mary Lou Smith, Mandeep S. Tamber and James T. Rutka

Object

The authors undertook this study to review their experience with cortical resections in the rolandic region in children with intractable epilepsy.

Methods

The authors retrospectively reviewed the medical records obtained in 22 children with intractable epilepsy arising from the rolandic region. All patients underwent preoperative electroencephalography (EEG), MR imaging, prolonged video-EEG recordings, functional MR imaging, magnetoencephalography, and in some instances PET/SPECT studies. In 21 patients invasive subdural grid and depth electrode monitoring was performed. Resection of the epileptogenic zones in the rolandic region was undertaken in all cases. Seizure outcome was graded according to the Engel classification. Functional outcome was determined using validated outcome scores.

Results

There were 10 girls and 12 boys, whose mean age at seizure onset was 3.2 years. The mean age at surgery was 10 years. Seizure duration prior to surgery was a mean of 7.4 years. Nine patients had preoperative hemiparesis. Neuropsychological testing revealed impairment in some domains in 19 patients in whom evaluation was possible. Magnetic resonance imaging abnormalities were identified in 19 patients. Magnetoencephalography was performed in all patients and showed perirolandic spike clusters on the affected side in 20 patients. The mean duration of invasive monitoring was 4.2 days. The mean number of seizures during the period of invasive monitoring was 17. All patients underwent resection that involved primary motor and/or sensory cortex. The most common pathological entity encountered was cortical dysplasia, in 13 children. Immediately postoperatively, 20 patients had differing degrees of hemiparesis, from mild to severe. The hemiparesis improved in all affected patients by 3–6 months postoperatively. With a mean follow-up of 4.1 years (minimum 2 years), seizure outcome in 14 children (64%) was Engel Class I and seizure outcome in 4 (18%) was Engel Class II. In this series, seizure outcome following perirolandic resection was intimately related to the child's age at the time of surgery. By univariate logistic regression analysis, age at surgery was a statistically significant factor predicting seizure outcome (p < 0.024).

Conclusions

Resection of rolandic cortex for intractable epilepsy is possible with expected morbidity. Accurate mapping of regions of functional cortex and epileptogenic zones may lead to improved seizure outcome in children with intractable rolandic epilepsy. It is important to counsel patients and families preoperatively to prepare them for possible worsened functional outcome involving motor, sensory and/or language pathways.