Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Steffen Fleck x
Clear All Modify Search
Restricted access

Soenke Langner, Steffen Fleck, Rebecca Seipel, Henry W. S. Schroeder, Norbert Hosten and Michael Kirsch

Object

Extracranial-intracranial (EC-IC) bypass surgery remains an important treatment alternative for patients with occlusive cerebrovascular disease. The aim of the present study was to use perfusion CT and CT angiography (CTA) to evaluate cerebral hemodynamics and bypass patency in patients with occlusive cerebrovascular disease before and after EC-IC bypass surgery.

Methods

Ten patients underwent perfusion CT and CTA before and after bypass surgery. Preoperative and postoperative digital subtraction angiography served as the diagnostic gold standard. An artery bypass was established from the superficial temporal artery to a cortical branch of the middle cerebral artery. Perfusion CT scanning was performed at the level of the basal ganglia. Color-coded perfusion maps of cerebral blood volume, cerebral blood flow, and time to peak were calculated.

Results

Preoperative perfusion CT showed significant prolonged time to peak and reduced cerebral blood flow of the affected hemisphere. Postoperative neurological deterioration did not develop in any patient. Computed tomography angiography provided adequate evaluation of the anastomoses as well as the course and caliber of the bypass and confirmed bypass patency in all patients. Postoperative perfusion CT showed improved cerebral hemodynamics with a return to nearly normal perfusion parameters.

Conclusions

Computed tomography angiography is a noninvasive and reliable tool for evaluating patients with EC-IC bypass. Perfusion CT allows monitoring of hemodynamic changes after bypass surgery. The combination of both modalities enables noninvasive anatomical and functional analysis of superficial temporal artery–middle cerebral artery anastomoses using a single CT protocol. Hemodynamic evaluation of patients with occlusive cerebrovascular disease before and after surgery may improve the prediction of outcome and may help identify patients in whom a bypass procedure can be performed.

Restricted access

Christiane Schroeder, Steffen Fleck, Michael R. Gaab, Klaus H. Schweim and Henry W. S. Schroeder

Object

The aim of this study was to evaluate and compare CSF flow after endoscopic third ventriculostomy (ETV) and endoscopic aqueductoplasty (EAP) in patients presenting with obstructive hydrocephalus caused by aqueductal stenosis.

Methods

In patients harboring aqueductal stenosis who underwent EAP (n = 8), ETV (n = 8), and both ETV and EAP (n = 6), CSF flow through the restored aqueduct and through the ventriculostomy was investigated using cine cardiac-gated phase-contrast MRI. For qualitative evaluation of CSF flow, an in-plane phase-contrast sequence in the midsagittal plane was used. The MR images were displayed in a closed-loop cine format. Quantitative through-plane measurements were performed in the axial plane perpendicular to the aqueduct and/or floor of the third ventricle.

Results

Evaluation revealed significantly higher CSF flow through the ventriculostomies compared with flow through the aqueducts. This was true both when comparing the ETV group with the EAP group and when comparing the flow of the ventriculostomy and aqueduct within the ETV and EAP group. There was no difference in aqueductal CSF flow between patients who underwent EAP alone and patients who underwent ETV and EAP. There was also no difference in ventriculostomy CSF flow between patients who underwent ETV alone and patients who underwent ETV and EAP. Fifty percent of the restored aqueducts became occluded at a mean of 46 months after surgery (range 18–126 months). In contrast, all ETVs remained patent in the mean follow-up period of 110 months after surgery, although 1 patient required shunt placement after 66 months.

Conclusions

Cerebrospinal fluid flow through ventriculostomies is significantly higher than aqueductal CSF flow after EAP. This could be one factor to explain why the reclosure rate of aqueducts after EAP is higher than the reclosure rate of the ventriculostoma after ETV.

Full access

Sascha Marx, Steffen K. Fleck, Ehab El Refaee, Jotham Manwaring, Christina Vorbau, Michael J. Fritsch, Michael R. Gaab, Henry W. S. Schroeder and Joerg Baldauf

OBJECTIVE

Since its revival in the early 1990s, neuroendoscopy has become an integral component of modern neurosurgery. Endoscopic stent placement for treatment of CSF pathway obstruction is a rarely used and underestimated procedure. The authors present the first series of neuroendoscopic intracranial stenting for CSF pathway obstruction in adults with associated results and complications spanning a long-term follow-up of 20 years.

METHODS

The authors retrospectively reviewed a prospectively maintained clinical database for endoscopic stent placement performed in adults between 1993 and 2013.

RESULTS

Of 526 endoscopic intraventricular procedures, stents were placed for treatment of CSF disorders in 25 cases (4.8%). The technique was used in the management of arachnoid cysts (ACs; n = 8), tumor-related CSF disorders (n = 13), and hydrocephalus due to stenosis of the foramen of Monro (n = 2) or aqueduct (n = 2). The mean follow-up was 87.1 months. No deaths or infections occurred that were related to endoscopic placement of intracranial stents. Late stent dislocation or migration was observed in 3 patients (12%).

CONCLUSIONS

Endoscopic intracranial stent placement in adults is rarely required but is a safe and helpful technique in select cases. It is indicated when reliable and long-lasting restoration of CSF pathway obstructions cannot be achieved with standard endoscopic techniques. In the treatment of tumor-related hydrocephalus, it is a good option to avoid reclosure of the restored CSF pathway by tumor growth. Currently, routine stent placement after endoscopic fenestration of ACs is not recommended. Stent placement for treatment of CSF disorders due to tumor is a good option for avoiding CSF shunting. To avoid stent migration and dislocation, and to allow for easy removal if needed, the device should be fixed to a bur hole reservoir.

Restricted access

Steffen Fleck, Sascha Marx, Clara Bobak, Victoria Richter, Stephan Nowak, Ehab El Rafaee, Nikolai Siebert, Karoline Ehlert, Henry W. S. Schroeder and Holger N. Lode

OBJECTIVE

Intracerebral metastases in neuroblastoma patients are rare, and information about the indication for and the outcome of neurosurgical procedures in this setting is scarce in the literature. The authors’ aim in the present study was to report a single-center experience with the neurosurgical treatment of intracerebral metastases in neuroblastoma.

METHODS

This study is a retrospective single-center analysis of all neurosurgical strategies used in the treatment of intracerebral metastases in neuroblastoma patients.

RESULTS

Between 2009 and 2017, 237 pediatric patients (94 girls, 143 boys) with a mean age of 39 months at diagnosis were treated for neuroblastoma. Five (2.1%) of the 237 patients had a neurosurgical procedure for intracerebral metastases. The metastases occurred a mean of 46 months after initial diagnosis. All of these patients had neuroblastoma stage 4. Indications for surgery were recurrent metastases after initial successful oncological treatment or progression of the metastasis under oncological treatment as well as deterioration of neurological function. Intraoperatively, the tumor usually had a distinguishable dissection plane but was infiltrative to adjacent nerves in some spots. Mean overall survival after the neurosurgical procedure was 22 months. Furthermore, in another 3 patients, a neurosurgical procedure was done for an intracranial but extracerebral metastasis.

CONCLUSIONS

Neurosurgical procedures for intracerebral metastases in neuroblastoma patients are rare and were performed in 2.1% of patients in the present study. Intracerebral metastases occurred during disease progression, and the prognosis after surgery was very limited. The main indications for surgery were rapid neurological deterioration or recurrence of the metastasis after initial successful oncological treatment. Intraoperatively, the metastases usually had a distinguishable dissection plane from the normal brain tissue.