Search Results

You are looking at 1 - 10 of 27 items for

  • Author or Editor: Sigurd H. Berven x
  • All content x
Clear All Modify Search
Full access

Krishn Khanna and Sigurd H. Berven

Vascular complications are an important adverse event that can be associated with spinal reconstructive surgery. Direct injury of vessels, or indirect traction or compression of vessels, can cause both arterial and venous injury. Indirect compression of the mesenteric vessels is a well-recognized complication of bracing and surgical care of children with spinal deformity (superior mesenteric artery syndrome), but the complication is not common or well recognized in the adult population with spinal deformity. The purpose of this case report is to detail the case of postoperative mesenteric ischemia in a 63-year-old man in whom a posterior approach was used to perform spinal deformity correction. Preoperatively, the patient had had significant lumbar hypolordosis. The reconstructive surgery with the use of posterior-based osteotomies resulted in a shortening of the posterior column of the spine but a relative lengthening of structures anterior to the spine. The significant lordosis achieved by the surgery led to an acute worsening of the mesenteric stenosis suffered by the patient. He required a vascular surgery intervention to restore perfusion to the bowel. Recognition of severe vasculopathy is important in anticipating potential postoperative vascular insufficiency. This case report will inform surgeons and clinicians to have a higher index of suspicion for the exacerbation of vascular insufficiency, including mesenteric pathology, in patients undergoing surgery that involves significant realignment of the spine. Preoperative recognition of vascular insufficiency and treatment of symptomatic disease may limit the occurrence of postoperative vascular complications in spinal reconstructive surgery.

Free access

John E. Ziewacz, Sigurd H. Berven, Valli P. Mummaneni, Tsung-Hsi Tu, Olaolu C. Akinbo, Russ Lyon, and Praveen V. Mummaneni

Object

The purpose of this study was to provide an evidence-based algorithm for the design, development, and implementation of a new checklist for the response to an intraoperative neuromonitoring alert during spine surgery.

Methods

The aviation and surgical literature was surveyed for evidence of successful checklist design, development, and implementation. The limitations of checklists and the barriers to their implementation were reviewed. Based on this review, an algorithm for neurosurgical checklist creation and implementation was developed. Using this algorithm, a multidisciplinary team surveyed the literature for the best practices for how to respond to an intraoperative neuromonitoring alert. All stakeholders then reviewed the evidence and came to consensus regarding items for inclusion in the checklist.

Results

A checklist for responding to an intraoperative neuromonitoring alert was devised. It highlights the specific roles of the anesthesiologist, surgeon, and neuromonitoring personnel and encourages communication between teams. It focuses on the items critical for identifying and correcting reversible causes of neuromonitoring alerts. Following initial design, the checklist draft was reviewed and amended with stakeholder input. The checklist was then evaluated in a small-scale trial and revised based on usability and feasibility.

Conclusions

The authors have developed an evidence-based algorithm for the design, development, and implementation of checklists in neurosurgery and have used this algorithm to devise a checklist for responding to intraoperative neuromonitoring alerts in spine surgery.

Restricted access

Dominic Amara, Praveen V. Mummaneni, Shane Burch, Vedat Deviren, Christopher P. Ames, Bobby Tay, Sigurd H. Berven, and Dean Chou

OBJECTIVE

Radiculopathy from the fractional curve, usually from L3 to S1, can create severe disability. However, treatment methods of the curve vary. The authors evaluated the effect of adding more levels of interbody fusion during treatment of the fractional curve.

METHODS

A single-institution retrospective review of adult patients treated for scoliosis between 2006 and 2016 was performed. Inclusion criteria were as follows: fractional curves from L3 to S1 > 10°, ipsilateral radicular symptoms concordant on the fractional curve concavity side, patients who underwent at least 1 interbody fusion at the level of the fractional curve, and a minimum 1-year follow-up. Primary outcomes included changes in fractional curve correction, lumbar lordosis change, pelvic incidence − lumbar lordosis mismatch change, scoliosis major curve correction, and rates of revision surgery and postoperative complications. Secondary analysis compared the same outcomes among patients undergoing posterior, anterior, and lateral approaches for their interbody fusion.

RESULTS

A total of 78 patients were included. There were no significant differences in age, sex, BMI, prior surgery, fractional curve degree, pelvic tilt, pelvic incidence, pelvic incidence − lumbar lordosis mismatch, sagittal vertical axis, coronal balance, scoliotic curve magnitude, proportion of patients undergoing an osteotomy, or average number of levels fused among the groups. The mean follow-up was 35.8 months (range 12–150 months). Patients undergoing more levels of interbody fusion had more fractional curve correction (7.4° vs 12.3° vs 12.1° for 1, 2, and 3 levels; p = 0.009); greater increase in lumbar lordosis (−1.8° vs 6.2° vs 13.7°, p = 0.003); and more scoliosis major curve correction (13.0° vs 13.7° vs 24.4°, p = 0.01). There were no statistically significant differences among the groups with regard to postoperative complications (overall rate 47.4%, p = 0.85) or need for revision surgery (overall rate 30.7%, p = 0.25). In the secondary analysis, patients undergoing anterior lumbar interbody fusion (ALIF) had a greater increase in lumbar lordosis (9.1° vs −0.87° for ALIF vs transforaminal lumbar interbody fusion [TLIF], p = 0.028), but also higher revision surgery rates unrelated to adjacent-segment pathology (25% vs 4.3%, p = 0.046). Higher ALIF revision surgery rates were driven by rod fracture in the majority (55%) of cases.

CONCLUSIONS

More levels of interbody fusion resulted in increased lordosis, scoliosis curve correction, and fractional curve correction. However, additional levels of interbody fusion up to 3 levels did not result in more postoperative complications or morbidity. ALIF resulted in a greater lumbar lordosis increase than TLIF, but ALIF had higher revision surgery rates.

Restricted access

Bruce M. McCormack, Rafael C. Bundoc, Mario R. Ver, Jose Manuel F. Ignacio, Sigurd H. Berven, and Edward F. Eyster

Object

The authors present 1-year results in 60 patients with cervical radiculopathy due to spondylosis and stenosis that was treated with a bilateral percutaneous facet implant. The implant consists of a screw and washer that distracts and immobilizes the cervical facet for root decompression and fusion. Clinical and radiological results are analyzed.

Methods

Between 2009 and 2011, 60 patients were treated with the DTRAX Facet System in a multicenter prospective single-arm study. All patients had symptomatic clinical radiculopathy, and conservative management had failed. The majority of patients had multilevel radiographically confirmed disease. Only patients with single-level radiculopathy confirmed by history, physical examination, and in some cases confirmatory nerve blocks were included. Patients were assessed preoperatively with Neck Disability Index, visual analog scale, quality of life questionnaire (Short Form-12 version 2), CT scans, MRI, and dynamic radiographs. Surgery was percutaneous posterior bilateral facet implants consisting of a screw and expandable washer and iliac crest bone aspirate. Patients underwent postoperative assessments at 2 weeks, 6 weeks, 3 months, 6 months, and 1 year with validated outcome questionnaires. Alterations of segmental and overall cervical lordosis, foraminal dimensions, device retention and fusion criteria were assessed for up to 1 year with CT reconstructions and radiographs. Fusion criteria were defined as bridging trabecular bone between the facets, translational motion < 2 mm, and angular motion < 5°.

Results

All patients were followed to 1 year postoperatively. Ages in this cohort ranged from 40 to 75 years, with a mean of 53 years. Forty-two patients were treated at C5–6, 8 at C6–7, 7 at C4–5, and 3 at C3–4. Fifty-six had bilateral implants; 4 had unilateral implants due to intraoperative facet fracture (2 patients) and inability to access the facet (2 patients). The Neck Disability Index, Short Form-12 version 2, and visual analog scale scores were significantly improved at 2 weeks and remained significantly improved up to 1 year. At the treated level, 93% had intrafacet bridging trabecular bone on CT scans, translational motion was < 2 mm in 100% and angular movement was < 5° in 83% at the 1-year follow-up. There was no significant change in overall cervical lordosis. There was a 1.6° loss of segmental lordosis at the treated level at 1 year that was significant. Foraminal width, volume, and posterior disc height was significantly increased at 6 months and returned to baseline levels at 1 year. There was no significant decrease in foraminal width and height at adjacent levels. There were no reoperations or surgery- or device-related complications, including implant failure or retained hardware.

Conclusions

Results indicate that the DTRAX Facet System is safe and effective for treatment of cervical radiculopathy.

Restricted access

Ping-Guo Duan, Praveen V. Mummaneni, Minghao Wang, Andrew K. Chan, Bo Li, Rory Mayer, Sigurd H. Berven, and Dean Chou

OBJECTIVE

In this study, the authors’ aim was to investigate whether obesity affects surgery rates for adjacent-segment degeneration (ASD) after transforaminal lumbar interbody fusion (TLIF) for spondylolisthesis.

METHODS

Patients who underwent single-level TLIF for spondylolisthesis at the University of California, San Francisco, from 2006 to 2016 were retrospectively analyzed. Inclusion criteria were a minimum 2-year follow-up, single-level TLIF, and degenerative lumbar spondylolisthesis. Exclusion criteria were trauma, tumor, infection, multilevel fusions, non-TLIF fusions, or less than a 2-year follow-up. Patient demographic data were collected, and an analysis of spinopelvic parameters was performed. The patients were divided into two groups: mismatched, or pelvic incidence (PI) minus lumbar lordosis (LL) ≥ 10°; and balanced, or PI-LL < 10°. Within the two groups, the patients were further classified by BMI (< 30 and ≥ 30 kg/m2). Patients were then evaluated for surgery for ASD, matched by BMI and PI-LL parameters.

RESULTS

A total of 190 patients met inclusion criteria (72 males and 118 females, mean age 59.57 ± 12.39 years). The average follow-up was 40.21 ± 20.42 months (range 24–135 months). In total, 24 patients (12.63% of 190) underwent surgery for ASD. Within the entire cohort, 82 patients were in the mismatched group, and 108 patients were in the balanced group. Within the mismatched group, adjacent-segment surgeries occurred at the following rates: BMI < 30 kg/m2, 2.1% (1/48); and BMI ≥ 30 kg/m2, 17.6% (6/34). Significant differences were seen between patients with BMI ≥ 30 and BMI < 30 (p = 0.018). A receiver operating characteristic curve for BMI as a predictor for ASD was established, with an AUC of 0.69 (95% CI 0.49–0.90). The optimal BMI cutoff value determined by the Youden index is 29.95 (sensitivity 0.857; specificity 0.627). However, in the balanced PI-LL group (108/190 patients), there was no difference in surgery rates for ASD among the patients with different BMIs (p > 0.05).

CONCLUSIONS

In patients who have a PI-LL mismatch, obesity may be associated with an increased risk of surgery for ASD after TLIF, but in obese patients without PI-LL mismatch, this association was not observed.

Restricted access

Robert Heary

Restricted access

Ping-Guo Duan, Praveen V. Mummaneni, Jeremy M. V. Guinn, Joshua Rivera, Sigurd H. Berven, and Dean Chou

OBJECTIVE

The aim of this study was to investigate whether fat infiltration of the lumbar multifidus (LM) muscle affects revision surgery rates for adjacent-segment degeneration (ASD) after L4–5 transforaminal lumbar interbody fusion (TLIF) for degenerative spondylolisthesis.

METHODS

A total of 178 patients undergoing single-level L4–5 TLIF for spondylolisthesis (2006 to 2016) were retrospectively analyzed. Inclusion criteria were a minimum 2-year follow-up, preoperative MR images and radiographs, and single-level L4–5 TLIF for degenerative spondylolisthesis. Twenty-three patients underwent revision surgery for ASD during the follow-up. Another 23 patients without ASD were matched with the patients with ASD. Demographic data, Roussouly curvature type, and spinopelvic parameter data were collected. The fat infiltration of the LM muscle (L3, L4, and L5) was evaluated on preoperative MRI using the Goutallier classification system.

RESULTS

A total of 46 patients were evaluated. There were no differences in age, sex, BMI, or spinopelvic parameters with regard to patients with and those without ASD (p > 0.05). Fat infiltration of the LM was significantly greater in the patients with ASD than in those without ASD (p = 0.029). Fat infiltration was most significant at L3 in patients with ASD than in patients without ASD (p = 0.017). At L4 and L5, there was an increasing trend of fat infiltration in the patients with ASD than in those without ASD, but the difference was not statistically significant (p = 0.354 for L4 and p = 0.077 for L5).

CONCLUSIONS

Fat infiltration of the LM may be associated with ASD after L4–5 TLIF for spondylolisthesis. Fat infiltration at L3 may also be associated with ASD at L3–4 after L4–5 TLIF.

Restricted access

Dominic Amara, Praveen V. Mummaneni, Christopher P. Ames, Bobby Tay, Vedat Deviren, Shane Burch, Sigurd H. Berven, and Dean Chou

OBJECTIVE

Many options exist for the surgical management of adult spinal deformity. Radiculopathy and lumbosacral pain from the fractional curve (FC), typically from L4 to S1, is frequently a reason for scoliosis patients to pursue surgical intervention. The purpose of this study was to evaluate the outcomes of limited fusion of the FC only versus treatment of the entire deformity with long fusions.

METHODS

All adult scoliosis patients treated at the authors’ institution in the period from 2006 to 2016 were retrospectively analyzed. Patients with FCs from L4 to S1 > 10° and radiculopathy ipsilateral to the concavity of the FC were eligible for study inclusion and had undergone three categories of surgery: 1) FC only (FC group), 2) lower thoracic to sacrum (LT group), or 3) upper thoracic to sacrum (UT group). Primary outcomes were the rates of revision surgery and complications. Secondary outcomes were estimated blood loss, length of hospital stay, and discharge destination. Spinopelvic parameters were measured, and patients were stratified accordingly.

RESULTS

Of the 99 patients eligible for inclusion in the study, 27 were in the FC group, 46 in the LT group, and 26 in the UT group. There were no significant preoperative differences in age, sex, smoking status, prior operation, FC magnitude, pelvic tilt (PT), sagittal vertical axis (SVA), coronal balance, pelvic incidence–lumbar lordosis (PI-LL) mismatch, or proportion of well-aligned spines (SVA < 5 cm, PI-LL mismatch < 10°, and PT < 20°) among the three treatment groups. Mean follow-up was 30 (range 12–112) months, with a minimum 1-year follow-up. The FC group had a lower medical complication rate (22% [FC] vs 57% [LT] vs 58% [UT], p = 0.009) but a higher rate of extension surgery (26% [FC] vs 13% [LT] vs 4% [UT], p = 0.068). The respective average estimated blood loss (592 vs 1950 vs 2634 ml, p < 0.001), length of hospital stay (5.5 vs 8.3 vs 8.3 days, p < 0.001), and rate of discharge to acute rehabilitation (30% vs 46% vs 85%, p < 0.001) were all lower for FC and highest for UT.

CONCLUSIONS

Treatment of the FC only is associated with a lower complication rate, shorter hospital stay, and less blood loss than complete scoliosis treatment. However, there is a higher associated rate of extension of the construct to the lower or upper thoracic levels, and patients should be counseled when considering their options.

Restricted access

Dominic Amara, Praveen V. Mummaneni, Shane Burch, Vedat Deviren, Christopher P. Ames, Bobby Tay, Sigurd H. Berven, and Dean Chou

OBJECTIVE

Radiculopathy from the fractional curve, usually from L3 to S1, can create severe disability. However, treatment methods of the curve vary. The authors evaluated the effect of adding more levels of interbody fusion during treatment of the fractional curve.

METHODS

A single-institution retrospective review of adult patients treated for scoliosis between 2006 and 2016 was performed. Inclusion criteria were as follows: fractional curves from L3 to S1 > 10°, ipsilateral radicular symptoms concordant on the fractional curve concavity side, patients who underwent at least 1 interbody fusion at the level of the fractional curve, and a minimum 1-year follow-up. Primary outcomes included changes in fractional curve correction, lumbar lordosis change, pelvic incidence − lumbar lordosis mismatch change, scoliosis major curve correction, and rates of revision surgery and postoperative complications. Secondary analysis compared the same outcomes among patients undergoing posterior, anterior, and lateral approaches for their interbody fusion.

RESULTS

A total of 78 patients were included. There were no significant differences in age, sex, BMI, prior surgery, fractional curve degree, pelvic tilt, pelvic incidence, pelvic incidence − lumbar lordosis mismatch, sagittal vertical axis, coronal balance, scoliotic curve magnitude, proportion of patients undergoing an osteotomy, or average number of levels fused among the groups. The mean follow-up was 35.8 months (range 12–150 months). Patients undergoing more levels of interbody fusion had more fractional curve correction (7.4° vs 12.3° vs 12.1° for 1, 2, and 3 levels; p = 0.009); greater increase in lumbar lordosis (−1.8° vs 6.2° vs 13.7°, p = 0.003); and more scoliosis major curve correction (13.0° vs 13.7° vs 24.4°, p = 0.01). There were no statistically significant differences among the groups with regard to postoperative complications (overall rate 47.4%, p = 0.85) or need for revision surgery (overall rate 30.7%, p = 0.25). In the secondary analysis, patients undergoing anterior lumbar interbody fusion (ALIF) had a greater increase in lumbar lordosis (9.1° vs −0.87° for ALIF vs transforaminal lumbar interbody fusion [TLIF], p = 0.028), but also higher revision surgery rates unrelated to adjacent-segment pathology (25% vs 4.3%, p = 0.046). Higher ALIF revision surgery rates were driven by rod fracture in the majority (55%) of cases.

CONCLUSIONS

More levels of interbody fusion resulted in increased lordosis, scoliosis curve correction, and fractional curve correction. However, additional levels of interbody fusion up to 3 levels did not result in more postoperative complications or morbidity. ALIF resulted in a greater lumbar lordosis increase than TLIF, but ALIF had higher revision surgery rates.

Restricted access

Kai-Ming G. Fu, Justin S. Smith, David W. Polly Jr., Christopher P. Ames, Sigurd H. Berven, Joseph H. Perra, Richard E. McCarthy, D. Raymond Knapp Jr., and Christopher I. Shaffrey

Object

Patients with varied medical comorbidities often present with spinal pathology for which operative intervention is potentially indicated, but few studies have examined risk stratification in determining morbidity and mortality rates associated with the operative treatment of spinal disorders. This study provides an analysis of morbidity and mortality data associated with 22,857 cases reported in the multicenter, multisurgeon Scoliosis Research Society Morbidity and Mortality database stratified by American Society of Anesthesiologists (ASA) physical status classification, a commonly used system to describe preoperative physical status and to predict operative morbidity.

Methods

The Scoliosis Research Society Morbidity and Mortality database was queried for the year 2007, the year in which ASA data were collected. Inclusion criterion was a reported ASA grade. Cases were categorized by operation type and disease process. Details on the surgical approach and type of instrumentation were recorded. Major perioperative complications and deaths were evaluated. Two large subgroups—patients with adult degenerative lumbar disease and patients with major deformity—were also analyzed separately. Statistical analyses were performed with the chi-square test.

Results

The population studied comprised 22,857 patients. Spinal disease included degenerative disease (9409 cases), scoliosis (6782 cases), spondylolisthesis (2144 cases), trauma (1314 cases), kyphosis (831 cases), and other (2377 cases). The overall complication rate was 8.4%. Complication rates for ASA Grades 1 through 5 were 5.4%, 9.0%, 14.4%, 20.3%, and 50.0%, respectively (p = 0.001). In patients undergoing surgery for degenerative lumbar diseases and major adult deformity, similarly increasing rates of morbidity were found in higher-grade patients. The mortality rate was also higher in higher-grade patients. The incidence of major complications, including wound infections, hematomas, respiratory problems, and thromboembolic events, was also greater in patients with higher ASA grades.

Conclusions

Patients with higher ASA grades undergoing spinal surgery had significantly higher rates of morbidity than those with lower ASA grades. Given the common application of the ASA system to surgical patients, this grade may prove helpful for surgical decision making and preoperative counseling with regard to risks of morbidity and mortality.