Search Results

You are looking at 1 - 10 of 37 items for

  • Author or Editor: Sigurd Berven x
  • Refine by Access: all x
Clear All Modify Search
Full access

Krishn Khanna and Sigurd H. Berven

Vascular complications are an important adverse event that can be associated with spinal reconstructive surgery. Direct injury of vessels, or indirect traction or compression of vessels, can cause both arterial and venous injury. Indirect compression of the mesenteric vessels is a well-recognized complication of bracing and surgical care of children with spinal deformity (superior mesenteric artery syndrome), but the complication is not common or well recognized in the adult population with spinal deformity. The purpose of this case report is to detail the case of postoperative mesenteric ischemia in a 63-year-old man in whom a posterior approach was used to perform spinal deformity correction. Preoperatively, the patient had had significant lumbar hypolordosis. The reconstructive surgery with the use of posterior-based osteotomies resulted in a shortening of the posterior column of the spine but a relative lengthening of structures anterior to the spine. The significant lordosis achieved by the surgery led to an acute worsening of the mesenteric stenosis suffered by the patient. He required a vascular surgery intervention to restore perfusion to the bowel. Recognition of severe vasculopathy is important in anticipating potential postoperative vascular insufficiency. This case report will inform surgeons and clinicians to have a higher index of suspicion for the exacerbation of vascular insufficiency, including mesenteric pathology, in patients undergoing surgery that involves significant realignment of the spine. Preoperative recognition of vascular insufficiency and treatment of symptomatic disease may limit the occurrence of postoperative vascular complications in spinal reconstructive surgery.

Full access

Cheerag D. Upadhyaya, Sigurd Berven, and Praveen V. Mummaneni

Pedicle subtraction osteotomy (PSO) is a powerful technique for correcting a fixed sagittal plane deformity. The authors report the case of a 51-year-old man with a history of multiple prior lumbar operations, flat-back syndrome, thoracic kyphosis, and radiculopathy, who underwent deformity correction surgery with T3–S1 pedicle screw fixation and L-3 PSO. Progressive spondylolisthesis of the PSO segment associated with rod fracture then developed. The patient subsequently underwent anterior and posterior revision surgery. This case is a rare instance of spondylolisthesis following PSO.

Free access

Junichi Ohya, Todd D. Vogel, Sanjay S. Dhall, Sigurd Berven, and Praveen V. Mummaneni

S-2 alar iliac (S2AI) screw fixation has recently been recognized as a useful technique for pelvic fixation. The authors demonstrate two cases where S2AI fixation was indicated: one case was a sacral insufficiency fracture following a long-segment fusion in a patient with a transitional S-1 vertebra; the other case involved pseudarthrosis following lumbosacral fixation. S2AI screws offer rigid fixation, low profile, and allow easy connection to the lumbosacral rod. The authors describe and demonstrate the surgical technique and nuances for the S2AI screw in a case with transitional S-1 anatomy and in a case with normal S-1 anatomy.

The video can be found here: https://youtu.be/Sj21lk13_aw.

Restricted access

Bruce M. McCormack, Rafael C. Bundoc, Mario R. Ver, Jose Manuel F. Ignacio, Sigurd H. Berven, and Edward F. Eyster

Object

The authors present 1-year results in 60 patients with cervical radiculopathy due to spondylosis and stenosis that was treated with a bilateral percutaneous facet implant. The implant consists of a screw and washer that distracts and immobilizes the cervical facet for root decompression and fusion. Clinical and radiological results are analyzed.

Methods

Between 2009 and 2011, 60 patients were treated with the DTRAX Facet System in a multicenter prospective single-arm study. All patients had symptomatic clinical radiculopathy, and conservative management had failed. The majority of patients had multilevel radiographically confirmed disease. Only patients with single-level radiculopathy confirmed by history, physical examination, and in some cases confirmatory nerve blocks were included. Patients were assessed preoperatively with Neck Disability Index, visual analog scale, quality of life questionnaire (Short Form-12 version 2), CT scans, MRI, and dynamic radiographs. Surgery was percutaneous posterior bilateral facet implants consisting of a screw and expandable washer and iliac crest bone aspirate. Patients underwent postoperative assessments at 2 weeks, 6 weeks, 3 months, 6 months, and 1 year with validated outcome questionnaires. Alterations of segmental and overall cervical lordosis, foraminal dimensions, device retention and fusion criteria were assessed for up to 1 year with CT reconstructions and radiographs. Fusion criteria were defined as bridging trabecular bone between the facets, translational motion < 2 mm, and angular motion < 5°.

Results

All patients were followed to 1 year postoperatively. Ages in this cohort ranged from 40 to 75 years, with a mean of 53 years. Forty-two patients were treated at C5–6, 8 at C6–7, 7 at C4–5, and 3 at C3–4. Fifty-six had bilateral implants; 4 had unilateral implants due to intraoperative facet fracture (2 patients) and inability to access the facet (2 patients). The Neck Disability Index, Short Form-12 version 2, and visual analog scale scores were significantly improved at 2 weeks and remained significantly improved up to 1 year. At the treated level, 93% had intrafacet bridging trabecular bone on CT scans, translational motion was < 2 mm in 100% and angular movement was < 5° in 83% at the 1-year follow-up. There was no significant change in overall cervical lordosis. There was a 1.6° loss of segmental lordosis at the treated level at 1 year that was significant. Foraminal width, volume, and posterior disc height was significantly increased at 6 months and returned to baseline levels at 1 year. There was no significant decrease in foraminal width and height at adjacent levels. There were no reoperations or surgery- or device-related complications, including implant failure or retained hardware.

Conclusions

Results indicate that the DTRAX Facet System is safe and effective for treatment of cervical radiculopathy.

Full access

Darryl Lau, Andrew K. Chan, Alexander A. Theologis, Dean Chou, Praveen V. Mummaneni, Shane Burch, Sigurd Berven, Vedat Deviren, and Christopher Ames

OBJECTIVE

Because the surgical strategies for primary and metastatic spinal tumors are different, the respective associated costs and morbidities associated with those treatments likely vary. This study compares the direct costs and 90-day readmission rates between the resection of extradural metastatic and primary spinal tumors. The factors associated with cost and readmission are identified.

METHODS

Adults (age 18 years or older) who underwent the resection of spinal tumors between 2008 and 2013 were included in the study. Patients with intradural tumors were excluded. The direct costs of index hospitalization and 90-day readmission hospitalization were evaluated. The direct costs were compared between patients who were treated surgically for primary and metastatic spinal tumors. The independent factors associated with costs and readmissions were identified using multivariate analysis.

RESULTS

A total of 181 patients with spinal tumors were included (63 primary and 118 metastatic tumors). Overall, the mean index hospital admission cost for the surgical management of spinal tumors was $52,083. There was no significant difference in the cost of hospitalization between primary ($55,801) and metastatic ($50,098) tumors (p = 0.426). The independent factors associated with higher cost were male sex (p = 0.032), preoperative inability to ambulate (p = 0.002), having more than 3 comorbidities (p = 0.037), undergoing corpectomy (p = 0.021), instrumentation greater than 7 levels (p < 0.001), combined anterior-posterior approach (p < 0.001), presence of a perioperative complication (p < 0.001), and longer hospital stay (p < 0.001). The perioperative complication rate was 21.0%. Of this cohort, 11.6% of patients were readmitted within 90 days, and the mean hospitalization cost of that readmission was $20,078. Readmission rates after surgical treatment for primary and metastatic tumors were similar (11.1% vs 11.9%, respectively) (p = 0.880). Prior hospital stay greater than 15 days (OR 6.62, p = 0.016) and diagnosis of lung metastasis (OR 52.99, p = 0.007) were independent predictors of readmission.

CONCLUSIONS

Primary and metastatic spinal tumors are comparable with regard to the direct costs of the index surgical hospitalization and readmission rate within 90 days. The factors independently associated with costs are related to preoperative health status, type and complexity of surgery, and postoperative course.

Free access

John E. Ziewacz, Sigurd H. Berven, Valli P. Mummaneni, Tsung-Hsi Tu, Olaolu C. Akinbo, Russ Lyon, and Praveen V. Mummaneni

Object

The purpose of this study was to provide an evidence-based algorithm for the design, development, and implementation of a new checklist for the response to an intraoperative neuromonitoring alert during spine surgery.

Methods

The aviation and surgical literature was surveyed for evidence of successful checklist design, development, and implementation. The limitations of checklists and the barriers to their implementation were reviewed. Based on this review, an algorithm for neurosurgical checklist creation and implementation was developed. Using this algorithm, a multidisciplinary team surveyed the literature for the best practices for how to respond to an intraoperative neuromonitoring alert. All stakeholders then reviewed the evidence and came to consensus regarding items for inclusion in the checklist.

Results

A checklist for responding to an intraoperative neuromonitoring alert was devised. It highlights the specific roles of the anesthesiologist, surgeon, and neuromonitoring personnel and encourages communication between teams. It focuses on the items critical for identifying and correcting reversible causes of neuromonitoring alerts. Following initial design, the checklist draft was reviewed and amended with stakeholder input. The checklist was then evaluated in a small-scale trial and revised based on usability and feasibility.

Conclusions

The authors have developed an evidence-based algorithm for the design, development, and implementation of checklists in neurosurgery and have used this algorithm to devise a checklist for responding to intraoperative neuromonitoring alerts in spine surgery.

Restricted access

Dominic Amara, Praveen V. Mummaneni, Christopher P. Ames, Bobby Tay, Vedat Deviren, Shane Burch, Sigurd H. Berven, and Dean Chou

OBJECTIVE

Many options exist for the surgical management of adult spinal deformity. Radiculopathy and lumbosacral pain from the fractional curve (FC), typically from L4 to S1, is frequently a reason for scoliosis patients to pursue surgical intervention. The purpose of this study was to evaluate the outcomes of limited fusion of the FC only versus treatment of the entire deformity with long fusions.

METHODS

All adult scoliosis patients treated at the authors’ institution in the period from 2006 to 2016 were retrospectively analyzed. Patients with FCs from L4 to S1 > 10° and radiculopathy ipsilateral to the concavity of the FC were eligible for study inclusion and had undergone three categories of surgery: 1) FC only (FC group), 2) lower thoracic to sacrum (LT group), or 3) upper thoracic to sacrum (UT group). Primary outcomes were the rates of revision surgery and complications. Secondary outcomes were estimated blood loss, length of hospital stay, and discharge destination. Spinopelvic parameters were measured, and patients were stratified accordingly.

RESULTS

Of the 99 patients eligible for inclusion in the study, 27 were in the FC group, 46 in the LT group, and 26 in the UT group. There were no significant preoperative differences in age, sex, smoking status, prior operation, FC magnitude, pelvic tilt (PT), sagittal vertical axis (SVA), coronal balance, pelvic incidence–lumbar lordosis (PI-LL) mismatch, or proportion of well-aligned spines (SVA < 5 cm, PI-LL mismatch < 10°, and PT < 20°) among the three treatment groups. Mean follow-up was 30 (range 12–112) months, with a minimum 1-year follow-up. The FC group had a lower medical complication rate (22% [FC] vs 57% [LT] vs 58% [UT], p = 0.009) but a higher rate of extension surgery (26% [FC] vs 13% [LT] vs 4% [UT], p = 0.068). The respective average estimated blood loss (592 vs 1950 vs 2634 ml, p < 0.001), length of hospital stay (5.5 vs 8.3 vs 8.3 days, p < 0.001), and rate of discharge to acute rehabilitation (30% vs 46% vs 85%, p < 0.001) were all lower for FC and highest for UT.

CONCLUSIONS

Treatment of the FC only is associated with a lower complication rate, shorter hospital stay, and less blood loss than complete scoliosis treatment. However, there is a higher associated rate of extension of the construct to the lower or upper thoracic levels, and patients should be counseled when considering their options.

Restricted access

Chih-Chang Chang, Dean Chou, Brenton Pennicooke, Joshua Rivera, Lee A. Tan, Sigurd Berven, and Praveen V. Mummaneni

OBJECTIVE

Potential advantages of using expandable versus static cages during transforaminal lumbar interbody fusion (TLIF) are not fully established. The authors aimed to compare the long-term radiographic outcomes of expandable versus static TLIF cages.

METHODS

A retrospective review of 1- and 2-level TLIFs over a 10-year period with expandable and static cages was performed at the University of California, San Francisco. Patients with posterior column osteotomy (PCO) were subdivided. Fusion assessment, cage subsidence, anterior and posterior disc height, foraminal dimensions, pelvic incidence (PI), segmental lordosis (SL), lumbar lordosis (LL), pelvic incidence–lumbar lordosis mismatch (PI-LL), pelvic tilt (PT), sacral slope (SS), and sagittal vertical axis (SVA) were assessed.

RESULTS

A consecutive series of 178 patients (with a total of 210 levels) who underwent TLIF using either static (148 levels) or expandable cages (62 levels) was reviewed. The mean patient age was 60.3 ± 11.5 years and 62.8 ± 14.1 years for the static and expandable cage groups, respectively. The mean follow-up was 42.9 ± 29.4 months for the static cage group and 27.6 ± 14.1 months for the expandable cage group. Within the 1-level TLIF group, the SL and PI-LL improved with statistical significance regardless of whether PCO was performed; however, the static group with PCOs also had statistically significant improvement in LL and SVA. The expandable cage with PCO subgroup had significant improvement in SL only. All of the foraminal parameters improved with statistical significance, regardless of the type of cages used; however, the expandable cage group had greater improvement in disc height restoration. The incidence of cage subsidence was higher in the expandable group (19.7% vs 5.4%, p = 0.0017). Within the expandable group, the unilateral facetectomy-only subgroup had a 5.6 times higher subsidence rate than the PCO subgroup (26.8% vs 4.8%, p = 0.04). Four expandable cages collapsed over time.

CONCLUSIONS

Expandable TLIF cages may initially restore disc height better than static cages, but they also have higher rates of subsidence. Unilateral facetectomy alone may result in more subsidence with expandable cages than using bilateral PCO, potentially because of insufficient facet release. Although expandable cages may have more power to induce lordosis and restore disc height than static cages, subsidence and endplate violation may negate any significant gains compared to static cages.

Restricted access

Dominic Amara, Praveen V. Mummaneni, Shane Burch, Vedat Deviren, Christopher P. Ames, Bobby Tay, Sigurd H. Berven, and Dean Chou

OBJECTIVE

Radiculopathy from the fractional curve, usually from L3 to S1, can create severe disability. However, treatment methods of the curve vary. The authors evaluated the effect of adding more levels of interbody fusion during treatment of the fractional curve.

METHODS

A single-institution retrospective review of adult patients treated for scoliosis between 2006 and 2016 was performed. Inclusion criteria were as follows: fractional curves from L3 to S1 > 10°, ipsilateral radicular symptoms concordant on the fractional curve concavity side, patients who underwent at least 1 interbody fusion at the level of the fractional curve, and a minimum 1-year follow-up. Primary outcomes included changes in fractional curve correction, lumbar lordosis change, pelvic incidence − lumbar lordosis mismatch change, scoliosis major curve correction, and rates of revision surgery and postoperative complications. Secondary analysis compared the same outcomes among patients undergoing posterior, anterior, and lateral approaches for their interbody fusion.

RESULTS

A total of 78 patients were included. There were no significant differences in age, sex, BMI, prior surgery, fractional curve degree, pelvic tilt, pelvic incidence, pelvic incidence − lumbar lordosis mismatch, sagittal vertical axis, coronal balance, scoliotic curve magnitude, proportion of patients undergoing an osteotomy, or average number of levels fused among the groups. The mean follow-up was 35.8 months (range 12–150 months). Patients undergoing more levels of interbody fusion had more fractional curve correction (7.4° vs 12.3° vs 12.1° for 1, 2, and 3 levels; p = 0.009); greater increase in lumbar lordosis (−1.8° vs 6.2° vs 13.7°, p = 0.003); and more scoliosis major curve correction (13.0° vs 13.7° vs 24.4°, p = 0.01). There were no statistically significant differences among the groups with regard to postoperative complications (overall rate 47.4%, p = 0.85) or need for revision surgery (overall rate 30.7%, p = 0.25). In the secondary analysis, patients undergoing anterior lumbar interbody fusion (ALIF) had a greater increase in lumbar lordosis (9.1° vs −0.87° for ALIF vs transforaminal lumbar interbody fusion [TLIF], p = 0.028), but also higher revision surgery rates unrelated to adjacent-segment pathology (25% vs 4.3%, p = 0.046). Higher ALIF revision surgery rates were driven by rod fracture in the majority (55%) of cases.

CONCLUSIONS

More levels of interbody fusion resulted in increased lordosis, scoliosis curve correction, and fractional curve correction. However, additional levels of interbody fusion up to 3 levels did not result in more postoperative complications or morbidity. ALIF resulted in a greater lumbar lordosis increase than TLIF, but ALIF had higher revision surgery rates.

Free access

Ping-Guo Duan, Praveen V. Mummaneni, Minghao Wang, Andrew K. Chan, Bo Li, Rory Mayer, Sigurd H. Berven, and Dean Chou

OBJECTIVE

In this study, the authors’ aim was to investigate whether obesity affects surgery rates for adjacent-segment degeneration (ASD) after transforaminal lumbar interbody fusion (TLIF) for spondylolisthesis.

METHODS

Patients who underwent single-level TLIF for spondylolisthesis at the University of California, San Francisco, from 2006 to 2016 were retrospectively analyzed. Inclusion criteria were a minimum 2-year follow-up, single-level TLIF, and degenerative lumbar spondylolisthesis. Exclusion criteria were trauma, tumor, infection, multilevel fusions, non-TLIF fusions, or less than a 2-year follow-up. Patient demographic data were collected, and an analysis of spinopelvic parameters was performed. The patients were divided into two groups: mismatched, or pelvic incidence (PI) minus lumbar lordosis (LL) ≥ 10°; and balanced, or PI-LL < 10°. Within the two groups, the patients were further classified by BMI (< 30 and ≥ 30 kg/m2). Patients were then evaluated for surgery for ASD, matched by BMI and PI-LL parameters.

RESULTS

A total of 190 patients met inclusion criteria (72 males and 118 females, mean age 59.57 ± 12.39 years). The average follow-up was 40.21 ± 20.42 months (range 24–135 months). In total, 24 patients (12.63% of 190) underwent surgery for ASD. Within the entire cohort, 82 patients were in the mismatched group, and 108 patients were in the balanced group. Within the mismatched group, adjacent-segment surgeries occurred at the following rates: BMI < 30 kg/m2, 2.1% (1/48); and BMI ≥ 30 kg/m2, 17.6% (6/34). Significant differences were seen between patients with BMI ≥ 30 and BMI < 30 (p = 0.018). A receiver operating characteristic curve for BMI as a predictor for ASD was established, with an AUC of 0.69 (95% CI 0.49–0.90). The optimal BMI cutoff value determined by the Youden index is 29.95 (sensitivity 0.857; specificity 0.627). However, in the balanced PI-LL group (108/190 patients), there was no difference in surgery rates for ASD among the patients with different BMIs (p > 0.05).

CONCLUSIONS

In patients who have a PI-LL mismatch, obesity may be associated with an increased risk of surgery for ASD after TLIF, but in obese patients without PI-LL mismatch, this association was not observed.