Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Shunrou Fujiwara x
  • All content x
Clear All Modify Search
Restricted access

Kenya Miyoshi, Tsukasa Wada, Ikuko Uwano, Makoto Sasaki, Hiroaki Saura, Shunrou Fujiwara, Fumiaki Takahashi, Eiki Tsushima, and Kuniaki Ogasawara

OBJECTIVE

The consistency of meningiomas is a critical factor affecting the difficulty of resection, operative complications, and operative time. The apparent diffusion coefficient (ADC) is derived from diffusion-weighted imaging (DWI) and is calculated using two optimized b values. While the results of comparisons between the standard ADC and the consistency of meningiomas vary, the shifted ADC has been reported to be strongly correlated with liver stiffness. The purpose of the present prospective cohort study was to determine whether preoperative standard and shifted ADC maps predict the consistency of intracranial meningiomas.

METHODS

Standard (b values 0 and 1000 sec/mm2) and shifted (b values 200 and 1500 sec/mm2) ADC maps were calculated using preoperative DWI in patients undergoing resection of intracranial meningiomas. Regions of interest (ROIs) were placed within the tumor on standard and shifted ADC maps and registered on the navigation system. Tumor tissue located at the registered ROI was resected through craniotomy, and its stiffness was measured using a durometer. The cutoff point lying closest to the upper left corner of a receiver operating characteristic (ROC) curve was determined for the detection of tumor stiffness such that an ultrasonic aspirator or scissors was always required for resection. Each tumor tissue sample with stiffness greater than or equal to or less than this cutoff point was defined as hard or soft tumor, respectively.

RESULTS

For 76 ROIs obtained from 25 patients studied, significant negative correlations were observed between stiffness and the standard ADC (ρ = −0.465, p < 0.01) and the shifted ADC (ρ = −0.490, p < 0.01). The area under the ROC curve for detecting hard tumor (stiffness ≥ 20.8 kPa) did not differ between the standard ADC (0.820) and the shifted ADC (0.847) (p = 0.39). The positive predictive value (PPV) for the combination of a low standard ADC and a low shifted ADC for detecting hard tumor was 89%. The PPV for the combination of a high standard ADC and a high shifted ADC for detecting soft tumor (stiffness < 20.8 kPa) was 81%.

CONCLUSIONS

A combination of standard and shifted ADC maps derived from preoperative DWI can be used to predict the consistency of intracranial meningiomas.

Full access

Koji Yoshida, Kuniaki Ogasawara, Hiroaki Saura, Hideo Saito, Masakazu Kobayashi, Kenji Yoshida, Kazunori Terasaki, Shunrou Fujiwara, and Akira Ogawa

OBJECT

Cognitive function is often improved or impaired after carotid endarterectomy (CEA) for patients with cerebral hemodynamic impairment. Cerebral glucose metabolism measured using positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) correlates with cognitive function in patients with neurodegenerative diseases. The present study aimed to determine whether postoperative changes in cerebral glucose metabolism are associated with cognitive changes after CEA.

METHODS

In patients who were scheduled to undergo CEA for ipsilateral internal carotid artery (ICA) stenosis (≥ 70% narrowing), cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) to acetazolamide were assessed preoperatively using brain perfusion single-photon emission computed tomography (SPECT). CBF measurement using SPECT was also performed immediately after CEA. For patients with reduced preoperative CVR to acetazolamide in the cerebral hemisphere ipsilateral to surgery, cerebral glucose metabolism was assessed using FDG-PET before surgery and 3 months after surgery and was analyzed using 3D stereotactic surface projection. Neuropsychological testing was also performed preoperatively and 3 months postoperatively.

RESULTS

Twenty-two patients with reduced preoperative CVR to acetazolamide successfully underwent FDG-PET studies and neuropsychological testing before and after CEA. Seven, 9, and 6 patients were defined as showing improved, unchanged, and impaired postoperative cognition, respectively, based on the neuropsychological assessments. The cortical area with increased postoperative glucose metabolism was greater in patients with improved postoperative cognition than in those with unchanged (p < 0.001) or impaired (p < 0.001) postoperative cognition. The cortical area with decreased postoperative glucose metabolism was greater in patients with impaired postoperative cognition than in those with improved (p < 0.001) or unchanged (p < 0.001) postoperative cognition. All 7 patients with improved cognition exhibited postoperative hemispheric increases in glucose metabolism, while 5 of the 6 patients with impaired cognition exhibited postoperative hemispheric decreases in glucose metabolism. Brain perfusion SPECT revealed that the latter 6 patients experienced postoperative cerebral hyperperfusion, and 2 of the 6 patients exhibited cerebral hyperperfusion syndrome. The cortical area with decreased postoperative glucose metabolism in these 2 patients was greater than that in other patients.

CONCLUSIONS

Postoperative changes in cerebral glucose metabolism, as measured using FDG-PET, are associated with cognitive improvement and impairment after CEA.