Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Shunichiro Kuramitsu x
Clear All Modify Search
Restricted access

Toshinori Hasegawa, Yoshihisa Kida, Takenori Kato, Hiroshi Iizuka, Shunichiro Kuramitsu and Takashi Yamamoto

Object

Little is known about long-term outcomes, including tumor control and adverse radiation effects, in patients harboring vestibular schwannomas (VSs) treated with stereotactic radiosurgery > 10 years previously. The aim of this study was to confirm whether Gamma Knife surgery (GKS) for VSs continues to be safe and effective > 10 years after treatment.

Methods

A total of 440 patients with VS (including neurofibromatosis Type 2) treated with GKS between May 1991 and December 2000 were evaluable. Of these, 347 patients (79%) underwent GKS as an initial treatment and 93 (21%) had undergone prior resection. Three hundred fifty-eight patients (81%) had a solid tumor and 82 (19%) had a cystic tumor. The median tumor volume was 2.8 cm3 and the median marginal dose was 12.8 Gy.

Results

The median follow-up period was 12.5 years. The actuarial 5- and ≥ 10-year progression-free survival was 93% and 92%, respectively. No patient developed treatment failure > 10 years after treatment. According to multivariate analysis, significant factors related to worse progression-free survival included brainstem compression with a deviation of the fourth ventricle (p < 0.0001), marginal dose ≤ 13 Gy (p = 0.01), prior treatment (p = 0.02), and female sex (p = 0.02). Of 287 patients treated at a recent optimum dose of ≤ 13 Gy, 3 (1%) developed facial palsy, including 2 with transient palsy and 1 with persistent palsy after a second GKS, and 3 (1%) developed facial numbness, including 2 with transient and 1 with persistent facial numbness. The actuarial 10-year facial nerve preservation rate was 97% in the high marginal dose group (> 13 Gy) and 100% in the low marginal dose group (≤ 13 Gy). Ten patients (2.3%) developed delayed cyst formation. One patient alone developed malignant transformation, indicating an incidence of 0.3%.

Conclusions

In this study GKS was a safe and effective treatment for the majority of patients followed > 10 years after treatment. Special attention should be paid to cyst formation and malignant transformation as late adverse radiation effects, although they appeared to be rare. However, it is necessary to collect further long-term follow-up data before making conclusions about the long-term safety and efficacy of GKS, especially for young patients with VSs.

Full access

Kazuya Motomura, Masazumi Fujii, Satoshi Maesawa, Shunichiro Kuramitsu, Atsushi Natsume and Toshihiko Wakabayashi

Alexia and agraphia are disorders common to the left inferior parietal lobule, including the angular and supramarginal gyri. However, it is still unclear how these cortical regions interact with other cortical sites and what the most important white matter tracts are in relation to reading and writing processes.

Here, the authors present the case of a patient who underwent an awake craniotomy for a left inferior parietal lobule glioma using direct cortical and subcortical electrostimulation. The use of subcortical stimulation allowed identification of the specific white matter tracts associated with reading and writing. These tracts were found as portions of the dorsal inferior frontooccipital fasciculus (IFOF) fibers in the deep parietal lobe that are responsible for connecting the frontal lobe to the superior parietal lobule. These findings are consistent with previous diffusion tensor imaging tractography and functional MRI studies, which suggest that the IFOF may play a role in the reading and writing processes. This is the first report of transient alexia and agraphia elicited through intraoperative direct subcortical electrostimulation, and the findings support the crucial role of the IFOF in reading and writing.

Restricted access

Kazuya Motomura, Atsushi Natsume, Kentaro Iijima, Shunichiro Kuramitsu, Masazumi Fujii, Takashi Yamamoto, Satoshi Maesawa, Junko Sugiura and Toshihiko Wakabayashi

OBJECTIVE

Maximum extent of resection (EOR) for lower-grade and high-grade gliomas can increase survival rates of patients. However, these infiltrative gliomas are often observed near or within eloquent regions of the brain. Awake surgery is of known benefit for the treatment of gliomas associated with eloquent regions in that brain function can be preserved. On the other hand, intraoperative MRI (iMRI) has been successfully used to maximize the resection of tumors, which can detect small amounts of residual tumors. Therefore, the authors assessed the value of combining awake craniotomy and iMRI for the resection of brain tumors in eloquent areas of the brain.

METHODS

The authors retrospectively reviewed the records of 33 consecutive patients with glial tumors in the eloquent brain areas who underwent awake surgery using iMRI. Volumetric analysis of MRI studies was performed. The pre-, intra-, and postoperative tumor volumes were measured in all cases using MRI studies obtained before, during, and after tumor resection.

RESULTS

Intraoperative MRI was performed to check for the presence of residual tumor during awake surgery in a total of 25 patients. Initial iMRI confirmed no further tumor resection in 9 patients (36%) because all observable tumors had already been removed. In contrast, intraoperative confirmation of residual tumor during awake surgery led to further tumor resection in 16 cases (64%) and eventually an EOR of more than 90% in 8 of 16 cases (50%). Furthermore, EOR benefiting from iMRI by more than 15% was found in 7 of 16 cases (43.8%). Interestingly, the increase in EOR as a result of iMRI for tumors associated mainly with the insular lobe was significantly greater, at 15.1%, than it was for the other tumors, which was 8.0% (p = 0.001).

CONCLUSIONS

This study revealed that combining awake surgery with iMRI was associated with a favorable surgical outcome for intrinsic brain tumors associated with eloquent areas. In particular, these benefits were noted for patients with tumors with complex anatomy, such as those associated with the insular lobe.