Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Shin Oe x
Clear All Modify Search
Restricted access

Yu Yamato, Tomohiko Hasegawa, Sho Kobayashi, Tatsuya Yasuda, Daisuke Togawa, Go Yoshida, Tomohiro Banno, Shin Oe, Yuki Mihara and Yukihiro Matsuyama

OBJECTIVE

Despite the significant incidence of rod fractures (RFs) following long-segment corrective fusion surgery, little is known about the optimal treatment strategy. The objectives of this study were to investigate the time course of clinical symptoms and treatments in patients with RFs following adult spinal deformity (ASD) surgery and to establish treatment recommendations.

METHODS

This study was a retrospective case series of patients with RFs whose data were retrieved from a prospectively collected single-center database. The authors reviewed the cases of 304 patients (mean age 62.9 years) who underwent ASD surgery. Primary symptoms, time course of symptoms, and treatments were investigated by reviewing medical records. Standing whole-spine radiographs obtained before and after RF development and at last follow-up were evaluated. Osseous union was assessed using CT scans and intraoperative findings.

RESULTS

There were 54 RFs in 53 patients (mean age 68.5 years [range 41–84 years]) occurring at a mean of 21 months (range 6–47 months) after surgery. In 1 patient RF occurred twice, with each case at a different time and level, and the symptoms and treatments for these 2 RFs were analyzed separately (1 case of revision surgery and 1 case of nonoperative treatment). The overall rate of RF observed on radiographs after a minimum follow-up of 1 year was 18.0% (54 of 300 cases). The clinical symptoms at the time of RF were pain in 77.8% (42 of 54 cases) and no onset of new symptoms in 20.5% (11 of 54 cases). The pain was temporary and had subsided in 19 of 42 cases (45%) within 2 weeks. In 36 of the 54 cases (66.7%) (including the first RF in the patient with 2 RFs), patients underwent revision surgery at a mean of 116 days (range 5–888 days) after diagnosis. In 18 cases patients received only nonoperative treatment as of the last follow-up, including 17 cases in which the patients experienced no pain and no remarkable progression of deformity (mean 18.5 months after RF development).

CONCLUSIONS

This analysis of 54 RFs in 53 patients following corrective fusion surgery for ASD demonstrates a relationship between symptoms and alignment change. Revision surgeries were performed in a total of 36 cases. Nonoperative care was offered in 18 (33.3%) of 54 cases at the last follow-up, with no additional symptoms in 17 of the 18 cases. These data offer useful information regarding informed decision making for patients in whom an RF occurs after ASD surgery.

Restricted access

Tatsuya Yasuda, Tomohiko Hasegawa, Yu Yamato, Daisuke Togawa, Sho Kobayashi, Go Yoshida, Tomohiro Banno, Hideyuki Arima, Shin Oe and Yukihiro Matsuyama

OBJECTIVE

The purpose of this study was to evaluate the effect of position on lumbar lordosis (LL) in adult spinal deformity (ASD) patients.

METHODS

The authors evaluated the radiographic data of ASD patients who underwent posterior corrective fusion surgery from the thoracic spine to L5, S1, or the ilium for the treatment of ASD of the lumbar spine. The spinopelvic parameters were measured in the standing position preoperatively. LL was also evaluated in the supine position preoperatively and in the prone position on the surgical frame. Changes in LL were compared between groups.

RESULTS

Eighty-five patients were included. The average LL in standing, supine, and prone positions was 11.8°, 24.3°, and 24.0°, respectively. LL increased significantly from standing to supine or prone position (p < 0.001). In 80 patients (94.1%), the difference between supine LL and prone LL was within 5°. Change in LL from standing to prone position was significantly higher in the severe deformity group.

CONCLUSIONS

The lordotic effect of intraoperative prone positioning was remarkable in patients with severe deformities. LL in the supine position was approximately the same as that in the prone position. Therefore, assessing preoperative supine lateral lumbar radiographs enables one to plan corrective spinal surgeries in ASD patients.

Restricted access

Hiroki Ushirozako, Go Yoshida, Sho Kobayashi, Tomohiko Hasegawa, Yu Yamato, Tatsuya Yasuda, Tomohiro Banno, Hideyuki Arima, Shin Oe, Yuki Mihara, Daisuke Togawa and Yukihiro Matsuyama

OBJECTIVE

Intraoperative neuromonitoring may be valuable for predicting postoperative neurological complications, and transcranial motor evoked potentials (TcMEPs) are the most reliable monitoring modality with high sensitivity. One of the most frequent problems of TcMEP monitoring is the high rate of false-positive alerts, also called “anesthetic fade.” The purpose of this study was to clarify the risk factors for false-positive TcMEP alerts and to find ways to reduce false-positive rates.

METHODS

The authors analyzed 703 patients who underwent TcMEP monitoring under total intravenous anesthesia during spinal surgery within a 7-year interval. They defined an alert point as final TcMEP amplitudes ≤ 30% of the baseline. Variations in body temperature (maximum − minimum body temperature during surgery) were measured. Patients with false-positive alerts were classified into 2 groups: a global group with alerts observed in 2 or more muscles of the upper and lower extremities, and a focal group with alerts observed in 1 muscle.

RESULTS

False-positive alerts occurred in 100 cases (14%), comprising 60 cases with global and 40 cases with focal alerts. Compared with the 545 true-negative cases, in the false-positive cases the patients had received a significantly higher total propofol dose (1915 mg vs 1380 mg; p < 0.001). In the false-positive cases with global alerts, the patients had also received a higher mean propofol dose than those with focal alerts (4.5 mg/kg/hr vs 4.2 mg/kg/hr; p = 0.087). The cutoff value of the total propofol dose for predicting false-positive alerts, with the best sensitivity and specificity, was 1550 mg. Multivariate logistic analysis revealed that a total propofol dose > 1550 mg (OR 4.583; 95% CI 2.785–7.539; p < 0.001), variation in body temperature (1°C difference; OR 1.691; 95% CI 1.060–2.465; p < 0.01), and estimated blood loss (500-ml difference; OR 1.309; 95% CI 1.155–1.484; p < 0.001) were independently associated with false-positive alerts.

CONCLUSIONS

Intraoperative total propofol dose > 1550 mg, larger variation in body temperature, and greater blood loss are independently associated with false-positive alerts during spinal surgery. The authors believe that these factors may contribute to the false-positive global alerts that characterize anesthetic fade. As it is necessary to consider multiple confounding factors to distinguish false-positive alerts from true-positive alerts, including variation in body temperature or ischemic condition, the authors argue the importance of a team approach that includes surgeons, anesthesiologists, and medical engineers.

Restricted access

Hiroki Ushirozako, Go Yoshida, Tomohiko Hasegawa, Yu Yamato, Tatsuya Yasuda, Tomohiro Banno, Hideyuki Arima, Shin Oe, Tomohiro Yamada, Koichiro Ide, Yuh Watanabe, Tadayoshi Kurita and Yukihiro Matsuyama

OBJECTIVE

Transcranial motor evoked potential (TcMEP) monitoring may be valuable for predicting postoperative neurological complications with a high sensitivity and specificity, but one of the most frequent problems is the high false-positive rate. The purpose of this study was to clarify the differences in the risk factors for false-positive TcMEP alerts seen when performing surgery in patients with pediatric scoliosis and adult spinal deformity and to identify a method to reduce the false-positive rate.

METHODS

The authors retrospectively analyzed 393 patients (282 adult and 111 pediatric patients) who underwent TcMEP monitoring while under total intravenous anesthesia during spinal deformity surgery. They defined their cutoff (alert) point as a final TcMEP amplitude of ≤ 30% of the baseline amplitude. Patients with false-positive alerts were classified into one of two groups: a group with pediatric scoliosis and a group with adult spinal deformity.

RESULTS

There were 14 cases of false-positive alerts (13%) during pediatric scoliosis surgery and 62 cases of false-positive alerts (22%) during adult spinal deformity surgery. Compared to the true-negative cases during adult spinal deformity surgery, the false-positive cases had a significantly longer duration of surgery and greater estimated blood loss (both p < 0.001). Compared to the true-negative cases during pediatric scoliosis surgery, the false-positive cases had received a significantly higher total fentanyl dose and a higher mean propofol dose (0.75 ± 0.32 mg vs 0.51 ± 0.18 mg [p = 0.014] and 5.6 ± 0.8 mg/kg/hr vs 5.0 ± 0.7 mg/kg/hr [p = 0.009], respectively). A multivariate logistic regression analysis revealed that the duration of surgery (1-hour difference: OR 1.701; 95% CI 1.364–2.120; p < 0.001) was independently associated with false-positive alerts during adult spinal deformity surgery. A multivariate logistic regression analysis revealed that the mean propofol dose (1-mg/kg/hr difference: OR 3.117; 95% CI 1.196–8.123; p = 0.020), the total fentanyl dose (0.05-mg difference; OR 1.270; 95% CI 1.078–1.497; p = 0.004), and the duration of surgery (1-hour difference: OR 2.685; 95% CI 1.131–6.377; p = 0.025) were independently associated with false-positive alerts during pediatric scoliosis surgery.

CONCLUSIONS

Longer duration of surgery and greater blood loss are more likely to result in false-positive alerts during adult spinal deformity surgery. In particular, anesthetic doses were associated with false-positive TcMEP alerts during pediatric scoliosis surgery. The authors believe that false-positive alerts during pediatric scoliosis surgery, in particular, are caused by “anesthetic fade.”