Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Sheng-fu Lo x
Clear All Modify Search
Full access

C. Rory Goodwin, Eric W. Sankey, Ann Liu, Benjamin D. Elder, Thomas Kosztowski, Sheng-Fu L. Lo, Charles G. Fisher, Michelle J. Clarke, Ziya L. Gokaslan and Daniel M. Sciubba

OBJECT

Surgical procedures and/or adjuvant therapies are effective modalities for the treatment of symptomatic spinal metastases. However, clinical results specific to the skin cancer spinal metastasis cohort are generally lacking. The purpose of this study was to systematically review the literature for treatments, clinical outcomes, and survival following the diagnosis of a skin cancer spinal metastasis and evaluate prognostic factors in the context of spinal skin cancer metastases stratified by tumor subtype.

METHODS

The authors performed a literature review using PubMed, Embase, CINAHL, and Web of Science to identify articles since 1950 that reported survival, clinical outcomes, and/or prognostic factors for the skin cancer patient population with spinal metastases. The methodological quality of reviews was assessed using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) tool.

RESULTS

Sixty-five studies met the preset criteria and were included in the analysis. Of these studies, a total of 25, 40, 25, and 12 studies included patients who underwent some form of surgery, radiotherapy, chemotherapy, or observation alone, respectively. Sixty-three of the 65 included studies were retrospective in nature (Class of Evidence [CoE] IV), and the 2 prospective studies were CoE II. Based on the studies analyzed, the median overall survival for a patient with a spinal metastasis from a primary skin malignancy is 4.0 months; survival by tumor subtype is 12.5 months for patients with basal cell carcinoma (BCC), 4.0 months for those with melanoma, 4.0 months for those with squamous cell carcinoma, 3.0 months for those with pilomatrix carcinoma, and 1.5 months for those with Merkel cell carcinoma (p < 0.0001). The overall percentage of known continued disease progression after spine metastasis diagnosis was 40.1% (n = 244/608, range 25.0%–88.9%), the rate of known recurrence of the primary skin cancer lesion was 3.5% (n = 21/608, range 0.2%–100.0%), and the rate of known spine metastasis recurrence despite treatment for all skin malignancies was 2.8% (n = 17/608, range 0.0%–33.3%). Age greater than 65 years, sacral spinal involvement, presence of a neurological deficit, and nonambulatory status were associated with decreased survival in patients diagnosed with a primary skin cancer spinal metastasis. All other clinical or prognostic parameters were of low or insufficient strength.

CONCLUSIONS

Patients diagnosed with a primary skin cancer metastasis to the spine have poor overall survival with the exception of those with BCC. The median duration of survival for patients who received surgical intervention alone, medical management (chemotherapy and/or radiation) alone, or the combination of therapies was similar across interventions. Age, spinal region, and neurological status may be associated with poor survival following surgery.

Restricted access

Wataru Ishida, Joshua Casaos, Arun Chandra, Adam D’Sa, Seba Ramhmdani, Alexander Perdomo-Pantoja, Nicholas Theodore, George Jallo, Ziya L. Gokaslan, Jean-Paul Wolinsky, Daniel M. Sciubba, Ali Bydon, Timothy F. Witham and Sheng-Fu L. Lo

OBJECTIVE

With the advent of intraoperative electrophysiological neuromonitoring (IONM), surgical outcomes of various neurosurgical pathologies, such as brain tumors and spinal deformities, have improved. However, its diagnostic and therapeutic value in resecting intradural extramedullary (ID-EM) spinal tumors has not been well documented in the literature. The objective of this study was to summarize the clinical results of IONM in patients with ID-EM spinal tumors.

METHODS

A retrospective patient database review identified 103 patients with ID-EM spinal tumors who underwent tumor resection with IONM (motor evoked potentials, somatosensory evoked potentials, and free-running electromyography) from January 2010 to December 2015. Patients were classified as those without any new neurological deficits at the 6-month follow-up (group A; n = 86) and those with new deficits (group B; n = 17). Baseline characteristics, clinical outcomes, and IONM findings were collected and statistically analyzed. In addition, a meta-analysis in compliance with the PRISMA guidelines was performed to estimate the overall pooled diagnostic accuracy of IONM in ID-EM spinal tumor resection.

RESULTS

No intergroup differences were discovered between the groups regarding baseline characteristics and operative data. In multivariate analysis, significant IONM changes (p < 0.001) and tumor location (thoracic vs others, p = 0.018) were associated with new neurological deficits at the 6-month follow-up. In predicting these changes, IONM yielded a sensitivity of 82.4% (14/17), specificity of 90.7% (78/86), positive predictive value (PPV) of 63.6% (14/22), negative predictive value (NPV) of 96.3% (78/81), and area under the curve (AUC) of 0.893. The diagnostic value slightly decreased in patients with schwannomas (AUC = 0.875) and thoracic tumors (AUC = 0.842). Among 81 patients who did not demonstrate significant IONM changes at the end of surgery, 19 patients (23.5%) exhibited temporary intraoperative exacerbation of IONM signals, which were recovered by interruption of surgical maneuvers; none of these patients developed new neurological deficits postoperatively. Including the present study, 5 articles encompassing 323 patients were eligible for this meta-analysis, and the overall pooled diagnostic value of IONM was a sensitivity of 77.9%, a specificity of 91.1%, PPV of 56.7%, and NPV of 95.7%.

CONCLUSIONS

IONM for the resection of ID-EM spinal tumors is a reasonable modality to predict new postoperative neurological deficits at the 6-month follow-up. Future prospective studies are warranted to further elucidate its diagnostic and therapeutic utility.

Full access

Varun Puvanesarajah, Sheng-fu Larry Lo, Nafi Aygun, Jason A. Liauw, Ignacio Jusué-Torres, Ioan A. Lina, Uri Hadelsberg, Benjamin D. Elder, Ali Bydon, Chetan Bettegowda, Daniel M. Sciubba, Jean-Paul Wolinsky, Daniele Rigamonti, Lawrence R. Kleinberg, Ziya L. Gokaslan, Timothy F. Witham, Kristin J. Redmond and Michael Lim

OBJECT

The number of patients with spinal tumors is rapidly increasing; spinal metastases develop in more than 30% of cancer patients during the course of their illness. Such lesions can significantly decrease quality of life, often necessitating treatment. Stereotactic radiosurgery has effectively achieved local control and symptomatic relief for these patients. The authors determined prognostic factors that predicted pain palliation and report overall institutional outcomes after spine stereotactic body radiation therapy (SBRT).

METHODS

Records of patients who had undergone treatment with SBRT for either primary spinal tumors or spinal metastases from June 2008 through June 2013 were retrospectively reviewed. Data were collected at the initial visit just before treatment and at 1-, 3-, 6-, and 12-month follow-up visits. Collected clinical data included Karnofsky Performance Scale scores, pain status, presence of neurological deficits, and prior radiation exposure at the level of interest. Radiation treatment plan parameters (dose, fractionation, and target coverage) were recorded. To determine the initial extent of epidural spinal cord compression (ESCC), the authors retrospectively reviewed MR images, assessed spinal instability according to the Bilsky scale, and evaluated lesion progression after treatment.

RESULTS

The study included 99 patients (mean age 60.4 years). The median survival time was 9.1 months (95% CI 6.9–17.2 months). Significant decreases in the proportion of patients reporting pain were observed at 3 months (p < 0.0001), 6 months (p = 0.0002), and 12 months (p = 0.0019) after treatment. Significant decreases in the number of patients reporting pain were also observed at the last follow-up visit (p = 0.00020) (median follow-up time 6.1 months, range 1.0–56.6 months). Univariate analyses revealed that significant predictors of persistent pain after intervention were initial ESCC grade, stratified by a Bilsky grade of 1c (p = 0.0058); initial American Spinal Injury Association grade of D (p = 0.011); initial Karnofsky Performance Scale score, stratified by a score of 80 (p = 0.002); the presence of multiple treated lesions (p = 0.044); and prior radiation at the site of interest (p < 0.0001). However, when multivariate analyses were performed on all variables with p values less than 0.05, the only predictor of pain at last follow-up visit was a prior history of radiation at the site of interest (p = 0.0038), although initial ESCC grade trended toward significance (p = 0.073). Using pain outcomes at 3 months, at this follow-up time point, pain could be predicted by receipt of radiation above a threshold biologically effective dose of 66.7 Gy.

CONCLUSIONS

Pain palliation occurs as early as 3 months after treatment; significant differences in pain reporting are also observed at 6 and 12 months. Pain palliation is limited for patients with spinal tumors with epidural extension that deforms the cord and for patients who have previously received radiation to the same site. Further investigation into the optimal dose and fractionation schedule are needed, but improved outcomes were observed in patients who received radiation at a biologically effective dose (with an a/b of 3.0) of 66.7 Gy or higher.