Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Shayan Moosa x
  • All content x
Clear All Modify Search
Restricted access

Chang-Chia Liu, Shayan Moosa, Mark Quigg, and W. Jeffrey Elias

OBJECTIVE

Chronic pain results in an enormous societal and financial burden. Opioids are the mainstay of treatment, but opioid abuse has led to an epidemic in the United States. Nonpharmacological treatment strategies like deep brain stimulation could be applied to refractory chronic pain if safe and effective brain targets are identified. The anterior insula is a putative mediator of pain-related affective-motivational and cognitive-evaluative cerebral processing. However, the effect of anterior insula stimulation on pain perception is still unknown. Here, the authors provide behavioral and neurophysiological evidence for stimulating the anterior insula as a means of potential therapeutic intervention for patients with chronic pain.

METHODS

Six patients with epilepsy in whom intracerebral electrodes had been implanted for seizure localization were recruited to the study. The direct anterior insula stimulations were performed in the inpatient epilepsy monitoring unit while subjects were fully awake, comfortable, and without sedating medications. The effects of anterior insula stimulation were assessed with quantitative sensory testing for heat pain threshold, nociceptive-specific cutaneous laser-evoked potentials, and intracranial electroencephalogram (EEG) recordings. Control stimulation of noninsular brain regions was performed to test stimulation specificity. Sham stimulations, in which no current was delivered, were also performed to control for potential placebo effects. The safety of these stimulations was evaluated by bedside physicians, real-time intracranial EEG monitoring, and electrocardiogram recordings.

RESULTS

Following anterior insula stimulations, the heat pain threshold of each patient significantly increased from baseline (p < 0.001) and correlated with stimulation intensity (regression analysis: β = 0.5712, standard error 0.070, p < 0.001). Significant changes in ongoing intracranial EEG frequency band powers (p < 0.001), reduction in laser pain intensity, and attenuated laser-evoked potentials were also observed following stimulations. Furthermore, the observed behavioral and neurophysiological effects persisted beyond the stimulations. Subjects were not aware of the stimulations, and there were no cardiovascular or untoward effects.

CONCLUSIONS

Additional, nonpharmacological therapies are imperative for the future management of chronic pain conditions and to mitigate the ongoing opioid crisis. This study suggests that direct stimulation of the anterior insula can safely alter cerebral pain processing in humans. Further investigation of the anterior insula as a potential target for therapeutic neuromodulation is underway.

Restricted access

Andrea Franzini, Luca Attuati, Ismail Zaed, Shayan Moosa, Antonella Stravato, Pierina Navarria, and Piero Picozzi

OBJECTIVE

The goal of this study was to assess the safety and efficacy of stereotactic central lateral thalamotomy with Gamma Knife radiosurgery in patients with neuropathic pain.

METHODS

Clinical and radiosurgical data were prospectively collected and analyzed in patients with neuropathic pain who underwent Gamma Knife central lateral thalamotomy. The safety and efficacy of the lesioning procedure were evaluated by neurological examination and standardized scales for pain intensity and health-related quality of life. Visual analog scale (VAS) for pain, McGill Pain Questionnaire (MPQ), EuroQol–5 dimensions (EQ-5D), and the 36-Item Short Form Health Survey, version 2 (SF-36v2) were measured during baseline and postoperative follow-up evaluations at 3, 6, 12, 24, and 36 months.

RESULTS

Eight patients with neuropathic pain underwent Gamma Knife central lateral thalamotomy. Four patients suffered from trigeminal deafferentation pain, 2 from brachial plexus injury, 1 from central poststroke facial neuropathic pain, and 1 from postherpetic neuralgia. No lesioning-related adverse effect was recorded during the follow-up periods. All patients had pain reduction following thalamotomy. The mean follow-up time was 24 months. At the last follow-up visits, 5 patients reported ≥ 50% VAS pain reduction. The overall mean VAS pain score was 9.4 (range 8–10) before radiosurgery. After 1 year, the mean VAS pain score decreased significantly, from 9.4 (range 8–10) to 5.5 (mean −41.33%, p = 0.01). MPQ scores significantly decreased (mean −22.18%, p = 0.014). Statistically significant improvements of the SF-36v2 quality of life survey (mean +48.16%, p = 0.012) and EQ-5D (+45.16%, p = 0.012) were observed. At 2 years after radiosurgery, the VAS pain score remained significantly reduced to a mean value of 5.5 (p = 0.027). Statistically significant improvements were also observed for the MPQ (mean −16.05%, p = 0.034); the EQ-5D (mean +35.48%, p = 0.028); and the SF-36v2 (mean +35.84%, p = 0.043). At the last follow-up visits, pain had recurred in 2 patients, who were suffering from central poststroke neuropathic pain and brachial plexus injury, respectively.

CONCLUSIONS

Safe, nonpharmacological therapies are imperative for the management of refectory chronic pain conditions. The present series demonstrates that Gamma Knife central lateral thalamotomy is safe and potentially effective in the long term for relieving chronic neuropathic pain refractory to pharmacotherapy and for restoring quality of life.

Free access

Tony R. Wang, Shayan Moosa, Robert F. Dallapiazza, W. Jeffrey Elias, and Wendy J. Lynch

Drug addiction represents a significant public health concern that has high rates of relapse despite optimal medical therapy and rehabilitation support. New therapies are needed, and deep brain stimulation (DBS) may be an effective treatment. The past 15 years have seen numerous animal DBS studies for addiction to various drugs of abuse, with most reporting decreases in drug-seeking behavior with stimulation. The most common target for stimulation has been the nucleus accumbens, a key structure in the mesolimbic reward pathway. In addiction, the mesolimbic reward pathway undergoes a series of neuroplastic changes. Chief among them is a relative hypofunctioning of the prefrontal cortex, which is thought to lead to the diminished impulse control that is characteristic of drug addiction. The prefrontal cortex, as well as other targets involved in drug addiction such as the lateral habenula, hypothalamus, insula, and subthalamic nucleus have also been stimulated in animals, with encouraging results. Although animal studies have largely shown promising results, current DBS studies for drug addiction primarily use stimulation during active drug use. More data are needed on the effect of DBS during withdrawal in preventing future relapse. The published human experience for DBS for drug addiction is currently limited to several promising case series or case reports that are not controlled. Further animal and human work is needed to determine what role DBS can play in the treatment of drug addiction.

Full access

Or Cohen-Inbar, Athreya Tata, Shayan Moosa, Cheng-chia Lee, and Jason P. Sheehan

OBJECTIVE

Parasellar meningiomas tend to invade the suprasellar, cavernous sinus, and petroclival regions, encroaching on adjacent neurovascular structures. As such, they prove difficult to safely and completely resect. Stereotactic radiosurgery (SRS) has played a central role in the treatment of parasellar meningiomas. Evaluation of tumor control rates at this location using simplified single-dimension measurements may prove misleading. The authors report the influence of SRS treatment parameters and the timing and volumetric changes of benign WHO Grade I parasellar meningiomas after SRS on long-term outcome.

METHODS

Patients with WHO Grade I parasellar meningiomas treated with single-session SRS and a minimum of 6 months of follow-up were selected. A total of 189 patients (22.2% males, n = 42) form the cohort. The median patient age was 54 years (range 19–88 years). SRS was performed as a primary upfront treatment for 44.4% (n = 84) of patients. Most (41.8%, n = 79) patients had undergone 1 resection prior to SRS. The median tumor volume at the time of SRS was 5.6 cm3 (0.2–54.8 cm3). The median margin dose was 14 Gy (range 5–35 Gy). The volumes of the parasellar meningioma were determined on follow-up scans, computed by segmenting the meningioma on a slice-by-slice basis with numerical integration using the trapezoidal rule.

RESULTS

The median follow-up was 71 months (range 6–298 months). Tumor volume control was achieved in 91.5% (n = 173). Tumor progression was documented in 8.5% (n = 16), equally divided among infield recurrences (4.2%, n = 8) and out-of-field recurrences (4.2%, n = 8). Post-SRS, new or worsening CN deficits were observed in 54 instances, of which 19 involved trigeminal nerve dysfunction and were 18 related to optic nerve dysfunction. Of these, 90.7% (n = 49) were due to tumor progression and only 9.3% (n = 5) were attributable to SRS. Overall, this translates to a 2.64% (n = 5/189) incidence of direct SRS-related complications. These patients were treated with repeat SRS (6.3%, n = 12), repeat resection (2.1%, n = 4), or both (3.2%, n = 6). For patients treated with a margin dose ≥ 16 Gy, the 2-, 4-, 6-, 8-, 10-, 12-, and 15-year actuarial progression-free survival rates are 100%, 100%, 95.7%, 95.7%, 95.7%, 95.7%, and 95.7%, respectively. Patients treated with a margin dose < 16 Gy, had 2-, 4-, 6-, 8-, 10-, 12-, and 15-year actuarial progression-free survival rates of 99.4%, 97.7%, 95.1%, 88.1%, 82.1%, 79.4%, and 79.4%, respectively. This difference was deemed statistically significant (p = 0.043). Reviewing the volumetric patient-specific measurements, the early follow-up volumetric measurements (at the 3-year follow-up) reliably predicted long-term volume changes and tumor volume control (at the 10-year follow-up) (p = 0.029).

CONCLUSIONS

SRS is a durable and minimally invasive treatment modality for benign parasellar meningiomas. SRS offers high rates of growth control with a low incidence of neurological deficits compared with other treatment modalities for meningiomas in this region. Volumetric regression or stability during short-term follow-up of 3 years after SRS was shown to be predictive of long-term tumor control.

Full access

Adeel Ilyas, Ching-Jen Chen, Dale Ding, Davis G. Taylor, Shayan Moosa, Cheng-Chia Lee, Or Cohen-Inbar, and Jason P. Sheehan

OBJECTIVE

Several recent studies have improved our understanding of the outcomes of volume-staged (VS) and dose-staged (DS) stereotactic radiosurgery (SRS) for the treatment of large (volume > 10 cm3) brain arteriovenous malformations (AVMs). In light of these recent additions to the literature, the aim of this systematic review is to provide an updated comparison of VS-SRS and DS-SRS for large AVMs.

METHODS

A systematic review of the literature was performed using PubMed to identify cohorts of 5 or more patients with large AVMs who had been treated with VS-SRS or DS-SRS. Baseline data and post-SRS outcomes were extracted for analysis.

RESULTS

A total of 11 VS-SRS and 10 DS-SRS studies comprising 299 and 219 eligible patients, respectively, were included for analysis. The mean obliteration rates for VS-SRS and DS-SRS were 41.2% (95% CI 31.4%–50.9%) and 32.3% (95% CI 15.9%–48.8%), respectively. Based on pooled individual patient data, the outcomes for patients treated with VS-SRS were obliteration in 40.3% (110/273), symptomatic radiation-induced changes (RICs) in 13.7% (44/322), post-SRS hemorrhage in 19.5% (50/256), and death in 7.4% (24/323); whereas the outcomes for patients treated with DS-SRS were obliteration in 32.7% (72/220), symptomatic RICs in 12.2% (31/254), post-SRS hemorrhage in 10.6% (30/282), and death in 4.6% (13/281).

CONCLUSIONS

Volume-staged SRS appears to afford higher obliteration rates than those achieved with DS-SRS, although with a less favorable complication profile. Therefore, VS-SRS or DS-SRS may be a reasonable treatment approach for large AVMs, either as stand-alone therapy or as a component of a multimodality management strategy.

Restricted access

Andrea Franzini, Giuseppe Messina, Vincenzo Levi, Antonio D’Ammando, Roberto Cordella, Shayan Moosa, Francesco Prada, and Angelo Franzini

OBJECTIVE

Central poststroke neuropathic pain is a debilitating syndrome that is often resistant to medical therapies. Surgical measures include motor cortex stimulation and deep brain stimulation (DBS), which have been used to relieve pain. The aim of this study was to retrospectively assess the safety and long-term efficacy of DBS of the posterior limb of the internal capsule for relieving central poststroke neuropathic pain and associated spasticity affecting the lower limb.

METHODS

Clinical and surgical data were retrospectively collected and analyzed in all patients who had undergone DBS of the posterior limb of the internal capsule to address central poststroke neuropathic pain refractory to conservative measures. In addition, long-term pain intensity and level of satisfaction gained from stimulation were assessed. Pain was evaluated using the visual analog scale (VAS). Information on gait improvement was obtained from medical records, neurological examination, and interview.

RESULTS

Four patients have undergone the procedure since 2001. No mortality or morbidity related to the surgery was recorded. In three patients, stimulation of the posterior limb of the internal capsule resulted in long-term pain relief; in a fourth patient, the procedure failed to produce any long-lasting positive effect. Two patients obtained a reduction in spasticity and improved motor capability. Before surgery, the mean VAS score was 9 (range 8–10). In the immediate postoperative period and within 1 week after the DBS system had been turned on, the mean VAS score was significantly lower at a mean of 3 (range 0–6). After a mean follow-up of 5.88 years, the mean VAS score was still reduced at 5.5 (range 3–8). The mean percentage of long-term pain reduction was 38.13%.

CONCLUSIONS

This series suggests that stimulation of the posterior limb of the internal capsule is safe and effective in treating patients with chronic neuropathic pain affecting the lower limb. The procedure may be a more targeted treatment method than motor cortex stimulation or other neuromodulation techniques in the subset of patients whose pain and spasticity are referred to the lower limbs.

Free access

Francesco Prada, Andrea Franzini, Shayan Moosa, Frederic Padilla, David Moore, Luigi Solbiati, Francesco DiMeco, and Wynn Legon

OBJECTIVE

The authors evaluated the acoustic properties of an implantable, biocompatible, polyolefin-based cranial prosthesis as a medium to transmit ultrasound energy into the intracranial space with minimal distortion for imaging and therapeutic purposes.

METHODS

The authors performed in vitro and in vivo studies of ultrasound transmission through a cranial prosthesis. In the in vitro phase, they analyzed the transmission of ultrasound energy through the prosthesis in a water tank using various transducers with resonance frequencies corresponding to those of devices used for neurosurgical imaging and therapeutic purposes. Four distinct, single-element, focused transducers were tested at fundamental frequencies of 500 kHz, 1 MHz, 2.5 MHz, and 5 MHz. In addition, the authors tested ultrasound transmission through the prosthesis using a linear diagnostic probe (center frequency 5.3 MHz) with a calibrated needle hydrophone in free water. Each transducer was assessed across a range of input voltages that encompassed their full minimum to maximum range without waveform distortion. They also tested the effect of the prosthesis on beam pressure and geometry. In the in vivo phase, the authors performed ultrasound imaging through the prosthesis implanted in a swine model.

RESULTS

Acoustic power attenuation through the prosthesis was considerably lower than that reported to occur through the native cranial bone. Increasing the frequency of the transducer augmented the degree of acoustic power loss. The degradation/distortion of the ultrasound beams passing through the prosthesis was minimal in all 3 spatial planes (XY, XZ, and YZ) that were examined. The images acquired in vivo demonstrated no spatial distortion from the prosthesis, with spatial relationships that were superimposable to those acquired through the dura.

CONCLUSIONS

The results of the tests performed on the polyolefin-based cranial prosthesis indicated that this is a valid medium for delivering both focused and unfocused ultrasound and obtaining ultrasound images of the intracranial space. The prosthesis may serve for several diagnostic and therapeutic ultrasound-based applications, including bedside imaging of the brain and ultrasound-guided focused ultrasound cerebral procedures.

Free access

Francesco Prada, Andrea Franzini, Shayan Moosa, Frederic Padilla, David Moore, Luigi Solbiati, Francesco DiMeco, and Wynn Legon

OBJECTIVE

The authors evaluated the acoustic properties of an implantable, biocompatible, polyolefin-based cranial prosthesis as a medium to transmit ultrasound energy into the intracranial space with minimal distortion for imaging and therapeutic purposes.

METHODS

The authors performed in vitro and in vivo studies of ultrasound transmission through a cranial prosthesis. In the in vitro phase, they analyzed the transmission of ultrasound energy through the prosthesis in a water tank using various transducers with resonance frequencies corresponding to those of devices used for neurosurgical imaging and therapeutic purposes. Four distinct, single-element, focused transducers were tested at fundamental frequencies of 500 kHz, 1 MHz, 2.5 MHz, and 5 MHz. In addition, the authors tested ultrasound transmission through the prosthesis using a linear diagnostic probe (center frequency 5.3 MHz) with a calibrated needle hydrophone in free water. Each transducer was assessed across a range of input voltages that encompassed their full minimum to maximum range without waveform distortion. They also tested the effect of the prosthesis on beam pressure and geometry. In the in vivo phase, the authors performed ultrasound imaging through the prosthesis implanted in a swine model.

RESULTS

Acoustic power attenuation through the prosthesis was considerably lower than that reported to occur through the native cranial bone. Increasing the frequency of the transducer augmented the degree of acoustic power loss. The degradation/distortion of the ultrasound beams passing through the prosthesis was minimal in all 3 spatial planes (XY, XZ, and YZ) that were examined. The images acquired in vivo demonstrated no spatial distortion from the prosthesis, with spatial relationships that were superimposable to those acquired through the dura.

CONCLUSIONS

The results of the tests performed on the polyolefin-based cranial prosthesis indicated that this is a valid medium for delivering both focused and unfocused ultrasound and obtaining ultrasound images of the intracranial space. The prosthesis may serve for several diagnostic and therapeutic ultrasound-based applications, including bedside imaging of the brain and ultrasound-guided focused ultrasound cerebral procedures.

Free access

Tony R. Wang, Aaron E. Bond, Robert F. Dallapiazza, Aaron Blanke, David Tilden, Thomas E. Huerta, Shayan Moosa, Francesco U. Prada, and W. Jeffrey Elias

Although the use of focused ultrasound (FUS) in neurosurgery dates to the 1950s, its clinical utility was limited by the need for a craniotomy to create an acoustic window. Recent technological advances have enabled efficient transcranial delivery of US. Moreover, US is now coupled with MRI to ensure precise energy delivery and monitoring. Thus, MRI-guided transcranial FUS lesioning is now being investigated for myriad neurological and psychiatric disorders. Among the first transcranial FUS treatments is thalamotomy for the treatment of various tremors. The authors provide a technical overview of FUS thalamotomy for tremor as well as important lessons learned during their experience with this emerging technology.