Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Shayan Moosa x
Clear All Modify Search
Free access

Tony R. Wang, Shayan Moosa, Robert F. Dallapiazza, W. Jeffrey Elias and Wendy J. Lynch

Drug addiction represents a significant public health concern that has high rates of relapse despite optimal medical therapy and rehabilitation support. New therapies are needed, and deep brain stimulation (DBS) may be an effective treatment. The past 15 years have seen numerous animal DBS studies for addiction to various drugs of abuse, with most reporting decreases in drug-seeking behavior with stimulation. The most common target for stimulation has been the nucleus accumbens, a key structure in the mesolimbic reward pathway. In addiction, the mesolimbic reward pathway undergoes a series of neuroplastic changes. Chief among them is a relative hypofunctioning of the prefrontal cortex, which is thought to lead to the diminished impulse control that is characteristic of drug addiction. The prefrontal cortex, as well as other targets involved in drug addiction such as the lateral habenula, hypothalamus, insula, and subthalamic nucleus have also been stimulated in animals, with encouraging results. Although animal studies have largely shown promising results, current DBS studies for drug addiction primarily use stimulation during active drug use. More data are needed on the effect of DBS during withdrawal in preventing future relapse. The published human experience for DBS for drug addiction is currently limited to several promising case series or case reports that are not controlled. Further animal and human work is needed to determine what role DBS can play in the treatment of drug addiction.

Full access

Or Cohen-Inbar, Athreya Tata, Shayan Moosa, Cheng-chia Lee and Jason P. Sheehan

OBJECTIVE

Parasellar meningiomas tend to invade the suprasellar, cavernous sinus, and petroclival regions, encroaching on adjacent neurovascular structures. As such, they prove difficult to safely and completely resect. Stereotactic radiosurgery (SRS) has played a central role in the treatment of parasellar meningiomas. Evaluation of tumor control rates at this location using simplified single-dimension measurements may prove misleading. The authors report the influence of SRS treatment parameters and the timing and volumetric changes of benign WHO Grade I parasellar meningiomas after SRS on long-term outcome.

METHODS

Patients with WHO Grade I parasellar meningiomas treated with single-session SRS and a minimum of 6 months of follow-up were selected. A total of 189 patients (22.2% males, n = 42) form the cohort. The median patient age was 54 years (range 19–88 years). SRS was performed as a primary upfront treatment for 44.4% (n = 84) of patients. Most (41.8%, n = 79) patients had undergone 1 resection prior to SRS. The median tumor volume at the time of SRS was 5.6 cm3 (0.2–54.8 cm3). The median margin dose was 14 Gy (range 5–35 Gy). The volumes of the parasellar meningioma were determined on follow-up scans, computed by segmenting the meningioma on a slice-by-slice basis with numerical integration using the trapezoidal rule.

RESULTS

The median follow-up was 71 months (range 6–298 months). Tumor volume control was achieved in 91.5% (n = 173). Tumor progression was documented in 8.5% (n = 16), equally divided among infield recurrences (4.2%, n = 8) and out-of-field recurrences (4.2%, n = 8). Post-SRS, new or worsening CN deficits were observed in 54 instances, of which 19 involved trigeminal nerve dysfunction and were 18 related to optic nerve dysfunction. Of these, 90.7% (n = 49) were due to tumor progression and only 9.3% (n = 5) were attributable to SRS. Overall, this translates to a 2.64% (n = 5/189) incidence of direct SRS-related complications. These patients were treated with repeat SRS (6.3%, n = 12), repeat resection (2.1%, n = 4), or both (3.2%, n = 6). For patients treated with a margin dose ≥ 16 Gy, the 2-, 4-, 6-, 8-, 10-, 12-, and 15-year actuarial progression-free survival rates are 100%, 100%, 95.7%, 95.7%, 95.7%, 95.7%, and 95.7%, respectively. Patients treated with a margin dose < 16 Gy, had 2-, 4-, 6-, 8-, 10-, 12-, and 15-year actuarial progression-free survival rates of 99.4%, 97.7%, 95.1%, 88.1%, 82.1%, 79.4%, and 79.4%, respectively. This difference was deemed statistically significant (p = 0.043). Reviewing the volumetric patient-specific measurements, the early follow-up volumetric measurements (at the 3-year follow-up) reliably predicted long-term volume changes and tumor volume control (at the 10-year follow-up) (p = 0.029).

CONCLUSIONS

SRS is a durable and minimally invasive treatment modality for benign parasellar meningiomas. SRS offers high rates of growth control with a low incidence of neurological deficits compared with other treatment modalities for meningiomas in this region. Volumetric regression or stability during short-term follow-up of 3 years after SRS was shown to be predictive of long-term tumor control.

Restricted access

Adeel Ilyas, Ching-Jen Chen, Dale Ding, Davis G. Taylor, Shayan Moosa, Cheng-Chia Lee, Or Cohen-Inbar and Jason P. Sheehan

OBJECTIVE

Several recent studies have improved our understanding of the outcomes of volume-staged (VS) and dose-staged (DS) stereotactic radiosurgery (SRS) for the treatment of large (volume > 10 cm3) brain arteriovenous malformations (AVMs). In light of these recent additions to the literature, the aim of this systematic review is to provide an updated comparison of VS-SRS and DS-SRS for large AVMs.

METHODS

A systematic review of the literature was performed using PubMed to identify cohorts of 5 or more patients with large AVMs who had been treated with VS-SRS or DS-SRS. Baseline data and post-SRS outcomes were extracted for analysis.

RESULTS

A total of 11 VS-SRS and 10 DS-SRS studies comprising 299 and 219 eligible patients, respectively, were included for analysis. The mean obliteration rates for VS-SRS and DS-SRS were 41.2% (95% CI 31.4%–50.9%) and 32.3% (95% CI 15.9%–48.8%), respectively. Based on pooled individual patient data, the outcomes for patients treated with VS-SRS were obliteration in 40.3% (110/273), symptomatic radiation-induced changes (RICs) in 13.7% (44/322), post-SRS hemorrhage in 19.5% (50/256), and death in 7.4% (24/323); whereas the outcomes for patients treated with DS-SRS were obliteration in 32.7% (72/220), symptomatic RICs in 12.2% (31/254), post-SRS hemorrhage in 10.6% (30/282), and death in 4.6% (13/281).

CONCLUSIONS

Volume-staged SRS appears to afford higher obliteration rates than those achieved with DS-SRS, although with a less favorable complication profile. Therefore, VS-SRS or DS-SRS may be a reasonable treatment approach for large AVMs, either as stand-alone therapy or as a component of a multimodality management strategy.

Restricted access

Andrea Franzini, Giuseppe Messina, Vincenzo Levi, Antonio D’Ammando, Roberto Cordella, Shayan Moosa, Francesco Prada and Angelo Franzini

OBJECTIVE

Central poststroke neuropathic pain is a debilitating syndrome that is often resistant to medical therapies. Surgical measures include motor cortex stimulation and deep brain stimulation (DBS), which have been used to relieve pain. The aim of this study was to retrospectively assess the safety and long-term efficacy of DBS of the posterior limb of the internal capsule for relieving central poststroke neuropathic pain and associated spasticity affecting the lower limb.

METHODS

Clinical and surgical data were retrospectively collected and analyzed in all patients who had undergone DBS of the posterior limb of the internal capsule to address central poststroke neuropathic pain refractory to conservative measures. In addition, long-term pain intensity and level of satisfaction gained from stimulation were assessed. Pain was evaluated using the visual analog scale (VAS). Information on gait improvement was obtained from medical records, neurological examination, and interview.

RESULTS

Four patients have undergone the procedure since 2001. No mortality or morbidity related to the surgery was recorded. In three patients, stimulation of the posterior limb of the internal capsule resulted in long-term pain relief; in a fourth patient, the procedure failed to produce any long-lasting positive effect. Two patients obtained a reduction in spasticity and improved motor capability. Before surgery, the mean VAS score was 9 (range 8–10). In the immediate postoperative period and within 1 week after the DBS system had been turned on, the mean VAS score was significantly lower at a mean of 3 (range 0–6). After a mean follow-up of 5.88 years, the mean VAS score was still reduced at 5.5 (range 3–8). The mean percentage of long-term pain reduction was 38.13%.

CONCLUSIONS

This series suggests that stimulation of the posterior limb of the internal capsule is safe and effective in treating patients with chronic neuropathic pain affecting the lower limb. The procedure may be a more targeted treatment method than motor cortex stimulation or other neuromodulation techniques in the subset of patients whose pain and spasticity are referred to the lower limbs.

Free access

Tony R. Wang, Aaron E. Bond, Robert F. Dallapiazza, Aaron Blanke, David Tilden, Thomas E. Huerta, Shayan Moosa, Francesco U. Prada and W. Jeffrey Elias

Although the use of focused ultrasound (FUS) in neurosurgery dates to the 1950s, its clinical utility was limited by the need for a craniotomy to create an acoustic window. Recent technological advances have enabled efficient transcranial delivery of US. Moreover, US is now coupled with MRI to ensure precise energy delivery and monitoring. Thus, MRI-guided transcranial FUS lesioning is now being investigated for myriad neurological and psychiatric disorders. Among the first transcranial FUS treatments is thalamotomy for the treatment of various tremors. The authors provide a technical overview of FUS thalamotomy for tremor as well as important lessons learned during their experience with this emerging technology.

Restricted access

Zengpanpan Ye, Xiaolin Ai and Chao You

Free access

Shayan Moosa, Ching-Jen Chen, Dale Ding, Cheng-Chia Lee, Srinivas Chivukula, Robert M. Starke, Chun-Po Yen, Zhiyuan Xu and Jason P. Sheehan

Object

The aim in this paper was to compare the outcomes of dose-staged and volume-staged stereotactic radio-surgery (SRS) in the treatment of large (> 10 cm3) arteriovenous malformations (AVMs).

Methods

A systematic literature review was performed using PubMed. Studies written in the English language with at least 5 patients harboring large (> 10 cm3) AVMs treated with dose- or volume-staged SRS that reported post-treatment outcomes data were selected for review. Demographic information, radiosurgical treatment parameters, and post-SRS outcomes and complications were analyzed for each of these studies.

Results

The mean complete obliteration rates for the dose- and volume-staged groups were 22.8% and 47.5%, respectively. Complete obliteration was demonstrated in 30 of 161 (18.6%) and 59 of 120 (49.2%) patients in the dose- and volume-staged groups, respectively. The mean rates of symptomatic radiation-induced changes were 13.5% and 13.6% in dose- and volume-staged groups, respectively. The mean rates of cumulative post-SRS latency period hemorrhage were 12.3% and 17.8% in the dose- and volume-staged groups, respectively. The mean rates of post-SRS mortality were 3.2% and 4.6% in dose- and volume-staged groups, respectively.

Conclusions

Volume-staged SRS affords higher obliteration rates and similar complication rates compared with dose-staged SRS. Thus, volume-staged SRS may be a superior approach for large AVMs that are not amenable to single-session SRS. Staged radiosurgery should be considered as an efficacious component of multimodality AVM management.

Full access

Ching-Jen Chen, Cheng-Chia Lee, Dale Ding, Robert M. Starke, Srinivas Chivukula, Chun-Po Yen, Shayan Moosa, Zhiyuan Xu, David Hung-Chi Pan and Jason P. Sheehan

OBJECT

The goal of this study was to evaluate the obliteration rate of intracranial dural arteriovenous fistulas (DAVFs) in patients treated with stereotactic radiosurgery (SRS), and to compare obliteration rates between cavernous sinus (CS) and noncavernous sinus (NCS) DAVFs, and between DAVFs with and without cortical venous drainage (CVD).

METHODS

A systematic literature review was performed using PubMed. The CS DAVFs and the NCS DAVFs were categorized using the Barrow and Borden classification systems, respectively. The DAVFs were also categorized by location and by the presence of CVD. Statistical analyses of pooled data were conducted to assess complete obliteration rates in CS and NCS DAVFs, and in DAVFs with and without CVD.

RESULTS

Nineteen studies were included, comprising 729 patients harboring 743 DAVFs treated with SRS. The mean obliteration rate was 63% (95% CI 52.4%–73.6%). Complete obliteration for CS and NCS DAVFs was achieved in 73% and 58% of patients, respectively. No significant difference in obliteration rates between CS and NCS DAVFs was found (OR 1.72, 95% CI 0.66–4.46; p = 0.27). Complete obliteration in DAVFs with and without CVD was observed in 56% and 75% of patients, respectively. A significantly higher obliteration rate was observed in DAVFs without CVD compared with DAVFs with CVD (OR 2.37, 95% CI 1.07–5.28; p = 0.03).

CONCLUSIONS

Treatment with SRS offers favorable rates of DAVF obliteration with low complication rates. Patients harboring DAVFs that are refractory or not amenable to endovascular or surgical therapy may be safely and effectively treated using SRS.