Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Shane Burch x
Clear All Modify Search
Restricted access

Zhuo Xi, Shane Burch, Praveen V. Mummaneni, Rory Richard Mayer, Charles Eichler and Dean Chou

OBJECTIVE

Obese patients have been shown to have longer operative times and more complications from surgery. However, for obese patients undergoing minimally invasive surgery, these differences may not be as significant. In the lateral position, it is thought that obesity is less of an issue because gravity pulls the visceral fat away from the spine; however, this observation is primarily anecdotal and based on expert opinion. The authors performed oblique lumbar interbody fusion (OLIF) and they report on the perioperative morbidity in obese and nonobese patients.

METHODS

The authors conducted a retrospective review of patients who underwent OLIF performed by 3 spine surgeons and 1 vascular surgeon at the University of California, San Francisco, from 2013 to 2018. Data collected included demographic variables; approach-related factors such as operative time, blood loss, and expected temporary approach-related sequelae; and overall complications. Patients were categorized according to their body mass index (BMI). Obesity was defined as a BMI ≥ 30 kg/m2, and severe obesity was defined as a BMI ≥ 35 kg/m2.

RESULTS

There were 238 patients (95 males and 143 females). There were no significant differences between the obese and nonobese groups in terms of sex, levels fused, or smoking status. For the entire cohort, there was no difference in operative time, blood loss, or complications when comparing obese and nonobese patients. However, a subset analysis of the 77 multilevel OLIFs that included L5–S1 demonstrated that the operative times for the nonobese group was 223.55 ± 57.93 minutes, whereas it was 273.75 ± 90.07 minutes for the obese group (p = 0.004). In this subset, the expected approach-related sequela rate was 13.2% for the nonobese group, whereas it was 33.3% for the obese group (p = 0.039). However, the two groups had similar blood loss (p = 0.476) and complication rates (p = 0.876).

CONCLUSIONS

Obesity and morbid obesity generally do not increase the operative time, blood loss, approach-related sequelae, or complications following OLIF. However, obese patients who undergo multilevel OLIF that includes the L5–S1 level do have longer operative times or a higher rate of expected approach-related sequelae. Obesity should not be considered a contraindication to multilevel OLIF, but patients should be informed of potentially increased morbidity if the L5–S1 level is to be included.

Full access

Darryl Lau, Andrew K. Chan, Alexander A. Theologis, Dean Chou, Praveen V. Mummaneni, Shane Burch, Sigurd Berven, Vedat Deviren and Christopher Ames

OBJECTIVE

Because the surgical strategies for primary and metastatic spinal tumors are different, the respective associated costs and morbidities associated with those treatments likely vary. This study compares the direct costs and 90-day readmission rates between the resection of extradural metastatic and primary spinal tumors. The factors associated with cost and readmission are identified.

METHODS

Adults (age 18 years or older) who underwent the resection of spinal tumors between 2008 and 2013 were included in the study. Patients with intradural tumors were excluded. The direct costs of index hospitalization and 90-day readmission hospitalization were evaluated. The direct costs were compared between patients who were treated surgically for primary and metastatic spinal tumors. The independent factors associated with costs and readmissions were identified using multivariate analysis.

RESULTS

A total of 181 patients with spinal tumors were included (63 primary and 118 metastatic tumors). Overall, the mean index hospital admission cost for the surgical management of spinal tumors was $52,083. There was no significant difference in the cost of hospitalization between primary ($55,801) and metastatic ($50,098) tumors (p = 0.426). The independent factors associated with higher cost were male sex (p = 0.032), preoperative inability to ambulate (p = 0.002), having more than 3 comorbidities (p = 0.037), undergoing corpectomy (p = 0.021), instrumentation greater than 7 levels (p < 0.001), combined anterior-posterior approach (p < 0.001), presence of a perioperative complication (p < 0.001), and longer hospital stay (p < 0.001). The perioperative complication rate was 21.0%. Of this cohort, 11.6% of patients were readmitted within 90 days, and the mean hospitalization cost of that readmission was $20,078. Readmission rates after surgical treatment for primary and metastatic tumors were similar (11.1% vs 11.9%, respectively) (p = 0.880). Prior hospital stay greater than 15 days (OR 6.62, p = 0.016) and diagnosis of lung metastasis (OR 52.99, p = 0.007) were independent predictors of readmission.

CONCLUSIONS

Primary and metastatic spinal tumors are comparable with regard to the direct costs of the index surgical hospitalization and readmission rate within 90 days. The factors independently associated with costs are related to preoperative health status, type and complexity of surgery, and postoperative course.

Restricted access

Dominic Amara, Praveen V. Mummaneni, Christopher P. Ames, Bobby Tay, Vedat Deviren, Shane Burch, Sigurd H. Berven and Dean Chou

OBJECTIVE

Many options exist for the surgical management of adult spinal deformity. Radiculopathy and lumbosacral pain from the fractional curve (FC), typically from L4 to S1, is frequently a reason for scoliosis patients to pursue surgical intervention. The purpose of this study was to evaluate the outcomes of limited fusion of the FC only versus treatment of the entire deformity with long fusions.

METHODS

All adult scoliosis patients treated at the authors’ institution in the period from 2006 to 2016 were retrospectively analyzed. Patients with FCs from L4 to S1 > 10° and radiculopathy ipsilateral to the concavity of the FC were eligible for study inclusion and had undergone three categories of surgery: 1) FC only (FC group), 2) lower thoracic to sacrum (LT group), or 3) upper thoracic to sacrum (UT group). Primary outcomes were the rates of revision surgery and complications. Secondary outcomes were estimated blood loss, length of hospital stay, and discharge destination. Spinopelvic parameters were measured, and patients were stratified accordingly.

RESULTS

Of the 99 patients eligible for inclusion in the study, 27 were in the FC group, 46 in the LT group, and 26 in the UT group. There were no significant preoperative differences in age, sex, smoking status, prior operation, FC magnitude, pelvic tilt (PT), sagittal vertical axis (SVA), coronal balance, pelvic incidence–lumbar lordosis (PI-LL) mismatch, or proportion of well-aligned spines (SVA < 5 cm, PI-LL mismatch < 10°, and PT < 20°) among the three treatment groups. Mean follow-up was 30 (range 12–112) months, with a minimum 1-year follow-up. The FC group had a lower medical complication rate (22% [FC] vs 57% [LT] vs 58% [UT], p = 0.009) but a higher rate of extension surgery (26% [FC] vs 13% [LT] vs 4% [UT], p = 0.068). The respective average estimated blood loss (592 vs 1950 vs 2634 ml, p < 0.001), length of hospital stay (5.5 vs 8.3 vs 8.3 days, p < 0.001), and rate of discharge to acute rehabilitation (30% vs 46% vs 85%, p < 0.001) were all lower for FC and highest for UT.

CONCLUSIONS

Treatment of the FC only is associated with a lower complication rate, shorter hospital stay, and less blood loss than complete scoliosis treatment. However, there is a higher associated rate of extension of the construct to the lower or upper thoracic levels, and patients should be counseled when considering their options.

Free access

Takahito Fujimori, Shinichi Inoue, Hai Le, William W. Schairer, Sigurd H. Berven, Bobby K. Tay, Vedat Deviren, Shane Burch, Motoki Iwasaki and Serena S. Hu

Object

Despite increasing numbers of patients with adult spinal deformity, it is unclear how to select the optimal upper instrumented vertebra (UIV) in long fusion surgery for these patients. The purpose of this study was to compare the use of vertebrae in the upper thoracic (UT) versus lower thoracic (LT) spine as the upper instrumented vertebra in long fusion surgery for adult spinal deformity.

Methods

Patients who underwent fusion from the sacrum to the thoracic spine for adult spinal deformity with sagittal imbalance at a single medical center were studied. The patients with a sagittal vertical axis (SVA) ≥ 40 mm who had radiographs and completed the 12-item Short-Form Health Survey (SF-12) preoperatively and at final follow-up (≥ 2 years postoperatively) were included.

Results

Eighty patients (mean age of 61.1 ± 10.9 years; 69 women and 11 men) met the inclusion criteria. There were 31 patients in the UT group and 49 patients in the LT group. The mean follow-up period was 3.6 ± 1.6 years. The physical component summary (PCS) score of the SF-12 significantly improved from the preoperative assessment to final follow-up in each group (UT, 34 to 41; LT, 29 to 37; p = 0.001). This improvement reached the minimum clinically important difference in both groups. There was no significant difference in PCS score improvement between the 2 groups (p = 0.8). The UT group had significantly greater preoperative lumbar lordosis (28° vs 18°, p = 0.03) and greater thoracic kyphosis (36° vs 18°, p = 0.001). After surgery, there was no significant difference in lumbar lordosis or thoracic kyphosis. The UT group had significantly greater postoperative cervicothoracic kyphosis (20° vs 11°, p = 0.009). The UT group tended to maintain a smaller positive SVA (51 vs 73 mm, p = 0.08) and smaller T-1 spinopelvic inclination (−2.6° vs 0.6°, p = 0.06). The LT group tended to have more proximal junctional kyphosis (PJK), although the difference did not reach statistical significance. Radiographic PJK was 32% in the UT group and 41% in the LT group (p = 0.4). Surgical PJK was 6.4% in the UT group and 10% in the LT group (p = 0.6).

Conclusions

Both the UT and LT groups demonstrated significant improvement in clinical and radiographic outcomes. A significant difference was not observed in improvement of clinical outcomes between the 2 groups.

Free access

Junseok Bae, Alexander A. Theologis, Russell Strom, Bobby Tay, Shane Burch, Sigurd Berven, Praveen V. Mummaneni, Dean Chou, Christopher P. Ames and Vedat Deviren

OBJECTIVE

Surgical treatment of adult spinal deformity (ASD) is an effective endeavor that can be accomplished using a variety of surgical strategies. Here, the authors assess and compare radiographic data, complications, and health-related quality-of-life (HRQoL) outcome scores among patients with ASD who underwent a posterior spinal fixation (PSF)–only approach, a posterior approach combined with lateral lumbar interbody fusion (LLIF+PSF), or a posterior approach combined with anterior lumbar interbody fusion (ALIF+PSF).

METHODS

The medical records of consecutive adults who underwent thoracolumbar fusion for ASD between 2003 and 2013 at a single institution were reviewed. Included were patients who underwent instrumentation from the pelvis to L-1 or above, had a sagittal vertical axis (SVA) of < 10 cm, and underwent a minimum of 2 years’ follow-up. Those who underwent a 3-column osteotomy were excluded. Three groups of patients were compared on the basis of the procedure performed, LLIF+PSF, ALIF+PSF, and PSF only. Perioperative spinal deformity parameters, complications, and HRQoL outcome scores (Oswestry Disability Index [ODI], Scoliosis Research Society 22-question Questionnaire [SRS-22], 36-Item Short Form Health Survey [SF-36], visual analog scale [VAS] for back/leg pain) from each group were assessed and compared with each other using ANOVA. The minimal clinically important differences used were −1.2 (VAS back pain), −1.6 (VAS leg pain), −15 (ODI), 0.587/0.375/0.8/0.42 (SRS-22 pain/function/self-image/mental health), and 5.2 (SF-36, physical component summary).

RESULTS

A total of 221 patients (58 LLIF, 91 ALIF, 72 PSF only) met the inclusion criteria. Average deformities consisted of a SVA of < 10 cm, a pelvic incidence–lumbar lordosis (LL) mismatch of > 10°, a pelvic tilt of > 20°, a lumbar Cobb angle of > 20°, and a thoracic Cobb angle of > 15°. Preoperative SVA, LL, pelvic incidence–LL mismatch, and lumbar and thoracic Cobb angles were similar among the groups. Patients in the PSF-only group had more comorbidities, those in the ALIF+PSF group were, on average, younger and had a lower body mass index than those in the LLIF+PSF group, and patients in the LLIF+PSF group had a significantly higher mean number of interbody fusion levels than those in the ALIF+PSF and PSF-only groups. At final follow-up, all radiographic parameters and the mean numbers of complications were similar among the groups. Patients in the LLIF+PSF group had proximal junctional kyphosis that required revision surgery significantly less often and fewer proximal junctional fractures and vertebral slips. All preoperative HRQoL scores were similar among the groups. After surgery, the LLIF+PSF group had a significantly lower ODI score, higher SRS-22 self-image/total scores, and greater achievement of the minimal clinically important difference for the SRS-22 pain score.

CONCLUSIONS

Satisfactory radiographic outcomes can be achieved similarly and adequately with these 3 surgical approaches for patients with ASD with mild to moderate sagittal deformity. Compared with patients treated with an ALIF+PSF or PSF-only surgical strategy, patients who underwent LLIF+PSF had lower rates of proximal junctional kyphosis and mechanical failure at the upper instrumented vertebra and less back pain, less disability, and better SRS-22 scores.

Restricted access

Yoon Ha, Keishi Maruo, Linda Racine, William W. Schairer, Serena S. Hu, Vedat Deviren, Shane Burch, Bobby Tay, Dean Chou, Praveen V. Mummaneni, Christopher P. Ames and Sigurd H. Berven

Object

Proximal junctional kyphosis (PJK) is a common and significant complication after corrective spinal deformity surgery. The object of this study was to compare—based on clinical outcomes, postoperative proximal junctional kyphosis rates, and prevalence of revision surgery—proximal thoracic (PT) and distal thoracic (DT) upper instrumented vertebra (UIV) in adults who underwent spine fusion to the sacrum for the treatment of spinal deformity.

Methods

In this retrospective study the authors evaluated clinical and radiographic data from consecutive adults (age > 21 years) with a deformity treated using long instrumented posterior spinal fusion to the sacrum in the period from 2007 to 2009. The PT group included patients in whom the UIV was between T-2 and T-5, whereas the DT group included patients in whom the UIV level was between T-9 and L-1. Perioperative surgical data were compared between the PT and DT groups. Additionally, segmental, regional, and global spinal alignments, as well as the sagittal Cobb angle at the proximal junction, were analyzed on preoperative, early postoperative, and final standing 36-in. radiographs. Patient-reported outcome measurements (visual analog scale, Scoliosis Research Society Patient Questionnaire-22, Oswestry Disability Index, and the 36-Item Short-Form Health Survey) were compared.

Results

Eighty-nine patients, 22 males and 67 females, had a minimum follow-up of 2 years, and thus were eligible for participation in this study. Sixty-seven patients were in the DT group and 22 were in the PT group. Operative time (p = 0.387) and estimated blood loss (p < 0.05) were slightly higher in the PT group. The overall rate of revision surgery was 48.0% and 54.5% in the DT and PT groups, respectively (p = 0.629). The prevalence of PJK according to radiological criteria was 34% in the DT group and 27% in the PT group (p = 0.609). The percent of patients with PJK that required surgical correction (surgical PJK) was 11.9% (8 of 67) in the DT group and 9.1% (2 of 22) in the PT group (p = 1.0). The onset of surgical PJK was significantly earlier than radiological PJK in the DT group (p < 0.01). The types of PJK were different in the PT and DT groups. Compression fracture at the UIV was more prevalent in the DT group, whereas subluxation was more prevalent in the PT group. Postoperatively, the PT group had less thoracic kyphosis (p = 0.02), less sagittal imbalance (p < 0.01), and less pelvic tilt (p = 0.04). In the DT group, early postoperative radiographs demonstrated that the proximal junctional angle of patients with surgical PJK was greater than in those without PJK and those with radiological PJK (p < 0.01). Clinical outcomes were significantly improved in both groups, and there was no significant difference between the groups.

Conclusions

Both PT and DT UIVs improve segmental and global sagittal plane alignment as well as patient-reported quality of life in those treated for adult spinal deformity. The prevalence of PJK was not different in the PT and DT groups. However, compression fracture was the mechanism more frequently observed with DT PJK, and subluxation was the mechanism more frequently observed in PT PJK. Strategies to avoid PJK may include vertebral augmentation to prevent fracture at the DT spine and mechanical means to prevent vertebral subluxation at the PT spine.

Restricted access

Michael M. Safaee, Alexander Tenorio, Joseph A. Osorio, Winward Choy, Dominic Amara, Lillian Lai, Annette M. Molinaro, Yalan Zhang, Serena S. Hu, Bobby Tay, Shane Burch, Sigurd H. Berven, Vedat Deviren, Sanjay S. Dhall, Dean Chou, Praveen V. Mummaneni, Charles M. Eichler, Christopher P. Ames and Aaron J. Clark

OBJECTIVE

Anterior approaches to the lumbar spine provide wide exposure that facilitates placement of large grafts with high fusion rates. There are limited data on the effects of obesity on perioperative complications.

METHODS

Data from consecutive patients undergoing anterior lumbar interbody fusion (ALIF) from 2007 to 2016 at a single academic center were analyzed. The primary outcome was any perioperative complication. Complications were divided into those occurring intraoperatively and those occurring postoperatively. Multivariate logistic regression was used to assess the association of obesity and other variables with these complications. An estimation table was used to identify a body mass index (BMI) threshold associated with increased risk of postoperative complication.

RESULTS

A total of 938 patients were identified, and the mean age was 57 years; 511 were females (54.5%). The mean BMI was 28.7 kg/m2, with 354 (37.7%) patients classified as obese (BMI ≥ 30 kg/m2). Forty patients (4.3%) underwent a lateral transthoracic approach, while the remaining 898 (95.7%) underwent a transabdominal retroperitoneal approach. Among patients undergoing transabdominal retroperitoneal ALIF, complication rates were higher for obese patients than for nonobese patients (37.0% vs 28.7%, p = 0.010), a difference that was driven primarily by postoperative complications (36.1% vs 26.0%, p = 0.001) rather than intraoperative complications (3.2% vs 4.3%, p = 0.416). Obese patients had higher rates of ileus (11.7% vs 7.2%, p = 0.020), wound complications (11.4% vs 3.4%, p < 0.001), and urinary tract infections (UTI) (5.0% vs 2.5%, p = 0.049). In a multivariate model, age, obesity, and number of ALIF levels fused were associated with an increased risk of postoperative complication. An estimation table including 19 candidate cut-points, odds ratios, and adjusted p values found a BMI ≥ 31 kg/m2 to have the highest association with postoperative complication (p = 0.012).

CONCLUSIONS

Obesity is associated with increased postoperative complications in ALIF, including ileus, wound complications, and UTI. ALIF is a safe and effective procedure. However, patients with a BMI ≥ 31 kg/m2 should be counseled on their increased risks and warrant careful preoperative medical optimization and close monitoring in the postoperative setting.