Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Shanbao Cai x
Clear All Modify Search
Free access

Xiang Gao, Haiyan Wang, Shanbao Cai, M. Reza Saadatzadeh, Helmut Hanenberg, Karen E. Pollok, Aaron A. Cohen-Gadol and Jinhui Chen


Peritumoral seizures are an early symptom of a glioma. To gain a better understanding of the molecular mechanism underlying tumor-induced epileptogenesis, the authors studied modulation of the N-methyl-d-aspartate (NMDA) receptor in peritumoral tissue.


To study the possible etiology of peritumoral seizures, NMDA receptor expression, posttranslational modification, and function were analyzed in an orthotopic mouse model of human gliomas and primary patient glioma tissue in which the peritumoral border (tumor-brain interface) was preserved in a tissue block during surgery.


The authors found that the NMDA receptor containing the 2B subunit (NR2B), a predominantly extrasynaptic receptor, is highly phosphorylated at S1013 in the neurons located in the periglioma area of the mouse brain. NR2B is also highly phosphorylated at S1013 in the neurons located in the peritumoral area from human brain tissue containing a glioma. The phosphorylation of the extrasynaptic NMDA receptor increases its permeability for Ca2+ influx and subsequently mediates neuronal overexcitation and seizure activity.


These data suggest that overexcitation of the extrasynaptic NMDA receptors in the peritumoral neurons may contribute to the development of peritumoral seizures and that the phosphorylated NR2B may be a therapeutic target for blocking primary brain tumor–induced peritumoral seizures.

Full access

Haiyan Wang, Shanbao Cai, Barbara J. Bailey, M. Reza Saadatzadeh, Jixin Ding, Eva Tonsing-Carter, Taxiarchis M. Georgiadis, T. Zachary Gunter, Eric C. Long, Robert E. Minto, Kevin R. Gordon, Stephanie E. Sen, Wenjing Cai, Jacob A. Eitel, David L. Waning, Lauren R. Bringman, Clark D. Wells, Mary E. Murray, Jann N. Sarkaria, Lawrence M. Gelbert, David R. Jones, Aaron A. Cohen-Gadol, Lindsey D. Mayo, Harlan E. Shannon and Karen E. Pollok


Improvement in treatment outcome for patients with glioblastoma multiforme (GBM) requires a multifaceted approach due to dysregulation of numerous signaling pathways. The murine double minute 2 (MDM2) protein may fulfill this requirement because it is involved in the regulation of growth, survival, and invasion. The objective of this study was to investigate the impact of modulating MDM2 function in combination with front-line temozolomide (TMZ) therapy in GBM.


The combination of TMZ with the MDM2 protein–protein interaction inhibitor nutlin3a was evaluated for effects on cell growth, p53 pathway activation, expression of DNA repair proteins, and invasive properties. In vivo efficacy was assessed in xenograft models of human GBM.


In combination, TMZ/nutlin3a was additive to synergistic in decreasing growth of wild-type p53 GBM cells. Pharmacodynamic studies demonstrated that inhibition of cell growth following exposure to TMZ/nutlin3a correlated with: 1) activation of the p53 pathway, 2) downregulation of DNA repair proteins, 3) persistence of DNA damage, and 4) decreased invasion. Pharmacokinetic studies indicated that nutlin3a was detected in human intracranial tumor xenografts. To assess therapeutic potential, efficacy studies were conducted in a xenograft model of intracranial GBM by using GBM cells derived from a recurrent wild-type p53 GBM that is highly TMZ resistant (GBM10). Three 5-day cycles of TMZ/nutlin3a resulted in a significant increase in the survival of mice with GBM10 intracranial tumors compared with single-agent therapy.


Modulation of MDM2/p53-associated signaling pathways is a novel approach for decreasing TMZ resistance in GBM. To the authors' knowledge, this is the first study in a humanized intracranial patient-derived xenograft model to demonstrate the efficacy of combining front-line TMZ therapy and an inhibitor of MDM2 protein–protein interactions.