Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Shaghayegh Askarian-Amiri x
Clear All Modify Search
Restricted access

Mahmoud Yousefifard, Solmaz Nasseri Maleki, Shaghayegh Askarian-Amiri, Alexander R. Vaccaro, Jens R. Chapman, Michael G. Fehlings, Mostafa Hosseini and Vafa Rahimi-Movaghar

OBJECTIVE

There is controversy about the role of scaffolds as an adjunctive therapy to mesenchymal stem cell (MSC) transplantation in spinal cord injury (SCI). Thus, the authors aimed to design a meta-analysis on preclinical evidence to evaluate the effectiveness of combination therapy of scaffold + MSC transplantation in comparison with scaffolds alone and MSCs alone in improving motor dysfunction in SCI.

METHODS

Electronic databases including Medline, Embase, Scopus, and Web of Science were searched from inception until the end of August 2018. Two independent reviewers screened related experimental studies. Animal studies that evaluated the effectiveness of scaffolds and/or MSCs on motor function recovery following experimental SCI were included. The findings were reported as standardized mean difference (SMD) and 95% confidence interval (CI).

RESULTS

A total of 34 articles were included in the meta-analysis. Analyses show that combination therapy in comparison with the scaffold group alone (SMD 2.00, 95% CI 1.53–2.46, p < 0.0001), the MSCs alone (SMD 1.58, 95% CI 0.84–2.31, p < 0.0001), and the nontreated group (SMD 3.52, 95% CI 2.84–4.20, p < 0.0001) significantly improved motor function recovery. Co-administration of MSCs + scaffolds only in the acute phase of injury (during the first 3 days after injury) leads to a significant recovery compared to scaffold alone (SMD 2.18, p < 0.0001). In addition, the cotransplantation of scaffolds with bone marrow–derived MSCs (SMD 1.99, p < 0.0001) and umbilical cord–derived MSCs (SMD 1.50, p = 0.001) also improved motor function following SCI.

CONCLUSIONS

The findings showed that scaffolds + MSCs is more effective than scaffolds and MSCs alone in improving motor function following SCI in animal models, when used in the acute phase of injury.