Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Serge C. Thal x
Clear All Modify Search
Restricted access

Serge C. Thal, Sonja Sporer, Mariusz Klopotowski, Simone E. Thal, Johannes Woitzik, Robert Schmid-Elsaesser, Nikolaus Plesnila and Stefan Zausinger

Object

Global cerebral edema is an independent risk factor for early death and poor outcome after subarachnoid hemorrhage (SAH). In the present study, the time course of brain edema formation, neurological deficits, and neuronal cell loss were investigated in the rat filament SAH model.

Methods

Brain water content and neurological deficits were determined in rats randomized to sham (1-, 24-, or 48-hour survival), SAH by endovascular perforation (1-, 24-, or 48-hour survival), or no surgery (control). The neuronal cell count (CA1–3) was quantified in a separate set of SAH (6-, 24-, 48-, or 72-hour survival) and shamoperated animals.

Results

Brain water content increased significantly 24 (80.2 ± 0.4% [SAH] vs 79.2 ± 0.1% [sham]) and 48 hours (79.8 ± 0.2% [SAH] vs 79.3 ± 0.1% [sham]) after SAH. The neuroscore was significantly worse after SAH (33 ± 15 [24 hours after SAH] vs 0 ± 0 points [sham]) and correlated with the extent of brain edema formation (r = 0.96, p < 0.001). No hippocampal damage was present up to 72 hours after SAH.

Conclusions

Brain water content and neurological dysfunction reached a maximum at 24 hours after SAH. This time point, therefore, seems to be optimal to test the effects of therapeutic interventions on brain edema formation. Neuronal cell loss was not present in CA1–3 up to 72 hours of SAH. Therefore, morphological damage needs to be evaluated at later time points.