Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Sebastian P. Norrdahl x
Clear All Modify Search
Restricted access

Sebastian P. Norrdahl, Tamekia L. Jones, Pooja Dave, David S. Hersh, Brandy Vaughn and Paul Klimo Jr.

OBJECTIVE

In pediatric patients, the development of a postoperative pseudomeningocele after an elective craniotomy is not unusual. Most will resolve with time, but some may require intervention. In this study, the authors analyzed patients who required intervention for a postoperative pseudomeningocele following an elective craniotomy or craniectomy and identified factors associated with the need for intervention.

METHODS

An institutional operative database of elective craniotomies and craniectomies was queried to identify all surgeries associated with development of a postoperative pseudomeningocele from January 1, 2010, to December 31, 2017. Demographic and surgical data were collected, as were details regarding postoperative events and interventions during either the initial admission or upon readmission. A bivariate analysis was performed to compare patients who underwent observation with those who required intervention.

RESULTS

Following 1648 elective craniotomies or craniectomies, 84 (5.1%) clinically significant pseudomeningoceles were identified in 82 unique patients. Of these, 58 (69%) of the pseudomeningoceles were diagnosed during the index admission (8 of which persisted and resulted in readmission), and 26 (31%) were diagnosed upon readmission. Forty-nine patients (59.8% of those with a pseudomeningocele) required one or more interventions, such as lumbar puncture(s), lumbar drain placement, wound exploration, or shunt placement or revision. Only race (p < 0.01) and duraplasty (p = 0.03, OR 3.0) were associated with the need for pseudomeningocele treatment.

CONCLUSIONS

Clinically relevant pseudomeningoceles developed in 5% of patients undergoing an elective craniotomy, with 60% of these pseudomeningoceles needing some form of intervention. The need for intervention was associated with race and whether a duraplasty was performed.

Full access

Ryan P. Lee, Raymond Xu, Pooja Dave, Sonia Ajmera, Jock C. Lillard, David Wallace, Austin Broussard, Mustafa Motiwala, Sebastian Norrdahl, Carissa Howie, Oluwatomi Akinduro, Garrett T. Venable, Nickalus R. Khan, Douglas R. Taylor, Brandy N. Vaughn and Paul Klimo Jr.

OBJECTIVE

There has been an increasing interest in the quantitative analysis of publishing within the field of neurosurgery at the individual, group, and institutional levels. The authors present an updated analysis of accredited pediatric neurosurgery training programs.

METHODS

All 28 Accreditation Council for Pediatric Neurosurgery Fellowship programs were contacted for the names of pediatric neurosurgeons who were present each year from 2011 through 2015. Faculty names were queried in Scopus for publications and citations during this time period. The 5-year institutional Hirsch index [ih(5)-index] and revised 5-year institutional h-index [ir(5)-index] were calculated to rank programs. Each publication was reviewed to determine authorship value, tier of research, clinical versus basic science research, subject matter, and whether it was pediatrics-specific. A unique 3-tier article classification system was introduced to stratify clinical articles by quality and complexity, with tier 3 being the lowest tier of publication (e.g., case reports) and tier 1 being the highest (e.g., randomized controlled trials).

RESULTS

Among 2060 unique publications, 1378 (67%) were pediatrics-specific. The pediatrics-specific articles had a mean of 15.2 citations per publication (median 6), whereas the non–pediatrics-specific articles had a mean of 23.0 citations per publication (median 8; p < 0.0001). For the 46% of papers that had a pediatric neurosurgeon as first or last author, the mean number of citations per publication was 12.1 (median 5.0) compared with 22.5 (median 8.0) for those in which a pediatric neurosurgeon was a middle author (p < 0.0001). Seventy-nine percent of articles were clinical research and 21% were basic science or translational research; however, basic science and translational articles had a mean of 36.9 citations per publication (median 15) compared with 12.6 for clinical publications (median 5.0; p < 0.0001). Among clinical articles, tier 1 papers had a mean of 15.0 citations per publication (median 8.0), tier 2 papers had a mean of 18.7 (median 8.0), and tier 3 papers had a mean of 7.8 (median 3.0). Neuro-oncology papers received the highest number of citations per publication (mean 25.7). The most common journal was the Journal of Neurosurgery: Pediatrics (20%). MD/PhD faculty members had significantly more citations per publication than MD faculty members (mean 26.7 vs 14.0; p < 0.0001) and also a higher number of publications per author (mean 38.6 vs 20.8). The median ih(5)- and ir(5)-indices per program were 14 (range 5–48) and 10 (range 5.6–37.2), respectively. The mean ir(5)/ih(5)-index ratio was 0.8. The top 5 fellowship programs (in descending order) as ranked by the ih(5)-index corrected for number of faculty members were The Hospital for Sick Children, Toronto; Children’s Hospital of Pittsburgh; University of California, San Francisco Benioff Children’s Hospital; Seattle Children’s Hospital; and St. Louis Children’s Hospital.

CONCLUSIONS

About two-thirds of publications authored by pediatric neurosurgeons are pediatrics-specific, although non–pediatrics-specific articles averaged more citations. Most of the articles authored by pediatric neurosurgeons are clinical, with basic and translational articles averaging more citations. Neurosurgeons with PhD degrees averaged more total publications and more citations per publication. In all, this is the most advanced and informative analysis of publication productivity in pediatric neurosurgery to date.

Restricted access

Sonia Ajmera, Ryan P. Lee, Andrew Schultz, David S. Hersh, Jacob Lepard, Raymond Xu, Hassan Saad, Olutomi Akinduro, Melissa Justo, Brittany D. Fraser, Mustafa Motiwala, Pooja Dave, Brian Jimenez, David A. Wallace, Olufemi Osikoya, Sebastian Norrdahl, Jennings H. Dooley, Nickalus R. Khan, Brandy N. Vaughn, Cormac O. Maher and Paul Klimo Jr.

OBJECTIVE

The objective of this study was to analyze the publication output of postgraduate pediatric neurosurgery fellows for a 10-year period as well as identify 25 individual highly productive pediatric neurosurgeons. The correlation between academic productivity and the site of fellowship training was studied.

METHODS

Programs certified by the Accreditation Council for Pediatric Neurosurgery Fellowships that had 5 or more graduating fellows from 2006 to 2015 were included for analysis. Fellows were queried using Scopus for publications during those 10 years with citation data through 2017. Pearson correlation coefficients were calculated, comparing program rankings of faculty against fellows using the revised Hirsch index (r-index; primary) and Hirsch index (h-index; secondary). A list of 25 highly accomplished individual academicians and their fellowship training locations was compiled.

RESULTS

Sixteen programs qualified with 152 fellows from 2006 to 2015; 136 of these surgeons published a total of 2009 articles with 23,735 citations. Most publications were pediatric-specific (66.7%) clinical articles (93.1%), with middle authorship (55%). Co-investigators were more likely from residency than fellowship. There was a clustering of the top 7 programs each having total publications of around 120 or greater, publications per fellow greater than 12, more than 1200 citations, and adjusted ir10 (revised 10-year institutional h-index) and ih10 (10-year institutional h-index) values of approximately 2 or higher. Correlating faculty and fellowship program rankings yielded correlation coefficients ranging from 0.53 to 0.80. Fifteen individuals (60%) in the top 25 (by r5 index) list completed their fellowship at 1 of these 7 institutions.

CONCLUSIONS

Approximately 90% of fellowship-trained pediatric neurosurgeons have 1 or more publications, but the spectrum of output is broad. There is a strong correlation between where surgeons complete their fellowships and postgraduate publications.