Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Sandrine de Ribaupierre x
  • All content x
Clear All Modify Search
Full access

Sandrine De Ribaupierre and Olivier Delalande

The surgical treatment of intractable epilepsy has evolved as new technical innovations have been made. Hemispherotomy techniques have been developed to replace hemispherectomy in order to reduce the complication rates while maintaining good seizure control.

Disconnective procedures are based on the interruption of the epileptic network rather than the removal of the epileptogenic zone. They can be applied to hemispheric pathologies, leading to hemispherotomy, but they can also be applied to posterior quadrant epilepsies, or hypothalamic hamartomas.

In this paper, the authors review the literature, present an overview of the historical background, and discuss the different techniques along with their outcomes and complications.

Restricted access

Faizal A. Haji, Adam Dubrowski, James Drake, and Sandrine de Ribaupierre


In recent years, dramatic changes in surgical education have increased interest in simulation-based training for complex surgical skills. This is particularly true for endoscopic third ventriculostomy (ETV), given the potential for serious intraoperative errors arising from surgical inexperience. However, prior to simulator development, a thorough assessment of training needs is essential to ensure development of educationally relevant platforms. The purpose of this study was to conduct a national needs assessment addressing specific goals of instruction, to guide development of simulation platforms, training curricula, and assessment metrics for ETV.


Canadian neurosurgeons performing ETV were invited to participate in a structured online questionnaire regarding the procedural steps for ETV, the frequency and significance of intraoperative errors committed while learning the technique, and simulation training modules of greatest potential educational benefit. Descriptive data analysis was completed for both quantitative and qualitative responses.


Thirty-two (55.2%) of 58 surgeons completed the survey. All believed that virtual reality simulation training for ETV would be a valuable addition to clinical training. Selection of ventriculostomy site, navigation within the ventricles, and performance of the ventriculostomy ranked as the most important steps to simulate. Technically inadequate ventriculostomy and inappropriate fenestration site selection were ranked as the most frequent/significant errors. A standard ETV module was thought to be most beneficial for resident training.


To inform the development of a simulation-based training program for ETV, the authors have conducted a national needs assessment. The results provide valuable insight to inform key design elements necessary to construct an educationally relevant device and educational program.

Restricted access

Daiana R. Pur, Roy Eagleson, Marcus Lo, Michael T. Jurkiewicz, Andrea Andrade, and Sandrine de Ribaupierre


Epilepsy affects neural processing and often causes intra- or interhemispheric language reorganization, rendering localization solely based on anatomical landmarks (e.g., Broca’s area) unreliable. Preoperative brain mapping is necessary to weigh the risk of resection with the risk of postoperative deficit. However, the use of conventional mapping methods (e.g., somatosensory stimulation, task-based functional MRI [fMRI]) in pediatric patients is technically difficult due to low compliance and their unique neurophysiology. Resting-state fMRI (rs-fMRI), a “task-free” technique based on the neural activity of the brain at rest, has the potential to overcome these limitations. The authors hypothesized that language networks can be identified from rs-fMRI by applying functional connectivity analyses.


Cases in which both task-based fMRI and rs-fMRI were acquired as part of the preoperative clinical protocol for epilepsy surgery were reviewed. Task-based fMRI consisted of 2 language tasks and 1 motor task. Resting-state fMRI data were acquired while the patients watched an animated movie and were analyzed using independent component analysis (i.e., data-driven method). The authors extracted language networks from rs-fMRI data by performing a similarity analysis with functionally defined language network templates via a template-matching procedure. The Dice coefficient was used to quantify the overlap.


Thirteen children underwent conventional task-based fMRI (e.g., verb generation, object naming), rs-fMRI, and structural imaging at 1.5T. The language components with the highest overlap with the language templates were identified for each patient. Language lateralization results from task-based fMRI and rs-fMRI mapping were comparable, with good concordance in most cases. Resting-state fMRI–derived language maps indicated that language was on the left in 4 patients (31%), on the right in 5 patients (38%), and bilateral in 4 patients (31%). In some cases, rs-fMRI indicated a more extensive language representation.


Resting-state fMRI–derived language network data were identified at the patient level using a template-matching method. More than half of the patients in this study presented with atypical language lateralization, emphasizing the need for mapping. Overall, these data suggest that this technique may be used to preoperatively identify language networks in pediatric patients. It may also optimize presurgical planning of electrode placement and thereby guide the surgeon’s approach to the epileptogenic zone.

Restricted access

Shobhan Vachhrajani, Sandrine de Ribaupierre, Hiroshi Otsubo, Ayako Ochi, Shelly K. Weiss, Elizabeth J. Donner, Elysa Widjaja, Elizabeth Kerr, Mary Lou Smith, James Drake, O. Carter Snead III, and James T. Rutka


Pediatric frontal lobe epilepsy (FLE) remains a challenging condition for neurosurgeons and epileptologists to manage. Postoperative seizure outcomes remain far inferior to those observed in temporal lobe epilepsies, possibly due to inherent difficulties in delineating and subsequently completely resecting responsible epileptogenic regions. In this study, the authors review their institutional experience with the surgical management of FLE and attempt to find predictors that may help to improve seizure outcome in this population.


All surgically treated cases of intractable FLE from 1990 to 2008 were reviewed. Demographic information, preoperative and intraoperative imaging and electrophysiological investigations, and follow-up seizure outcome were assessed. Inferential statistics were performed to look for potential predictors of seizure outcome.


Forty patients (20 male, 20 female) underwent surgical management of FLE during the study period. Patients were an average of 5.6 years old at the time of FLE onset and 11.7 years at the time of surgery; patients were followed for a mean of 40.25 months. Most patients displayed typical FLE semiology. Twenty-eight patients had discrete lesions identified on MRI. Eight patients underwent 2 operations. Cortical dysplasia was the most common pathological diagnosis. Engel Class I outcome was obtained in 25 patients (62.5%), while Engel Class II outcome was observed in 5 patients (12.5%). No statistically significant predictors of outcome were found.


Control of FLE remains a challenging problem. Favorable seizure outcome, obtained in 62% of patients in this series, is still not as easily obtained in FLE as it is in temporal lobe epilepsy. While no statistically significant predictors of seizure outcome were revealed in this study, patients with FLE continue to require extensive workup and investigation to arrive at a logical and comprehensive neurosurgical treatment plan. Future studies with improved neuroimaging and advanced invasive monitoring strategies may well help define factors for success in this form of epilepsy that is difficult to control.