Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Samuel Ryu x
Clear All Modify Search
Full access

Dong Ah Shin, Ryoong Huh, Sang Sup Chung, Jack Rock and Samuel Ryu

Object

Stereotactic radiosurgery (SRS) has become an important treatment alternative to surgery for a variety of spinal lesions. However, the use of SRS in the management of intradural intramedullary (IDIM) metastasis remains controversial. The aim of this study was to determine the clinical efficacy and safety of SRS for treatment of IDIM metastasis.

Methods

Nine patients with 11 IDIM metastases treated with SRS at Henry Ford Hospital were retrospectively reviewed. The mean age at presentation was 50 years, with a range of 14–71 years. There were 4 intradural extramedullary and 7 intramedullary lesions. The radiosurgery procedure used techniques of image-guided and intensitymodulated radiation. The mean treatment dose was 13.8 Gy, with a range of 10–16 Gy. All patients had clinical follow-up (except in 1 lesion), with an emphasis on initial symptoms and ambulatory status, and 8 patients (9 lesions) had imaging studies. The median follow-up duration was 10 months.

Results

The presenting symptoms were improved in 8 (80%) of 10 evaluable lesions, unchanged in 1 case, and worsened in 1 case. Radiographic responses were seen as follows: complete response in 2 (22%) of 9; partial response in 3 (33%) of 9; stable disease in 3 (33%) of 9; and progressive disease in 1 (11%) of 9. After radiosurgery, 7 patients (78%) remained ambulatory until the last follow-up visit. The overall median survival time after SRS was 8 months, with a range of 2–19 months. No radiation toxicity was detected clinically during the follow-up period.

Conclusions

Despite the fact that this was a small series of patients with IDIM metastasis who had limited treatment options, SRS appears to be an effective and safe method of treating patients with these lesions.

Restricted access

Samuel Ryu, Jack Rock, Mark Rosenblum and Jae Ho Kim

Object. Single-dose radiosurgery for solitary spinal metastases can achieve rapid and durable pain control. This study was conducted to determine the patterns of failure after spinal radiosurgery.

Methods. Forty-nine patients with 61 solitary spinal metastases underwent radiosurgery between May 2001 and May 2003. Single-dose radiosurgery (10–16 Gy) was delivered only to the involved spinal segments. The authors undertook a retrospective review of clinical notes, including patient questionnaires and radiological studies (computerized tomography or magnetic resonance imaging), to analyze patterns of failure following radiosurgery with regard to the pain and tumor control.

Complete and partial pain relief was achieved in 85% of the lesions treated. Relapse of pain at the treated site was noted in 7%. Radiologically, lesions progressively metastasized to the immediately adjacent spines in 5%. These patients also had progressive primary and/or other systemic metastatic diseases.

Conclusions. Spine-related pain control/reduction was excellent. Tumor recurrence at the treated segment and progression to the immediately adjacent region were rare. The results support the use of spinal radiosurgery as an effective treatment option for solitary spinal metastasis.

Full access

Reirradiation spine stereotactic body radiation therapy for spinal metastases: systematic review

International Stereotactic Radiosurgery Society practice guidelines

Sten Myrehaug, Arjun Sahgal, Motohiro Hayashi, Marc Levivier, Lijun Ma, Roberto Martinez, Ian Paddick, Jean Régis, Samuel Ryu, Ben Slotman and Antonio De Salles

OBJECTIVE

Spinal metastases that recur after conventional palliative radiotherapy have historically been difficult to manage due to concerns of spinal cord toxicity in the retreatment setting. Spine stereotactic body radiation therapy (SBRT), also known as stereotactic radiosurgery, is emerging as an effective and safe means of delivering ablative doses to these recurrent tumors. The authors performed a systematic review of the literature to determine the clinical efficacy and safety of spine SBRT specific to previously irradiated spinal metastases.

METHODS

A systematic literature review was conducted, which was specific to SBRT to the spine, using MEDLINE, Embase, Cochrane Evidence-Based Medicine Database, National Guideline Clearinghouse, and CMA Infobase, with further bibliographic review of appropriate articles. Research questions included: 1) Is retreatment spine SBRT efficacious with respect to local control and symptom control? 2) Is retreatment spine SBRT safe?

RESULTS

The initial literature search retrieved 2263 articles. Of these articles, 160 were potentially relevant, 105 were selected for in-depth review, and 9 studies met all inclusion criteria for analysis. All studies were single-institution series, including 4 retrospective, 3 retrospective series of prospective databases, 1 prospective, and 1 Phase I/II prospective study (low- or very low–quality data). The results indicated that spine SBRT is effective, with a median 1-year local control rate of 76% (range 66%–90%). Improvement in patients’ pain scores post-SBRT ranged from 65% to 81%. Treatment delivery was safe, with crude rates of vertebral body fracture of 12% (range 0%–22%) and radiation-induced myelopathy of 1.2%.

CONCLUSIONS

This systematic literature review suggests that SBRT to previously irradiated spinal metastases is safe and effective with respect to both local control and pain relief. Although the evidence is limited to low-quality data, SBRT can be a recommended treatment option for reirradiation.

Full access

Stereotactic body radiotherapy for de novo spinal metastases: systematic review

International Stereotactic Radiosurgery Society practice guidelines

Zain A. Husain, Arjun Sahgal, Antonio De Salles, Melissa Funaro, Janis Glover, Motohiro Hayashi, Masahiro Hiraoka, Marc Levivier, Lijun Ma, Roberto Martínez-Alvarez, J. Ian Paddick, Jean Régis, Ben J. Slotman and Samuel Ryu

OBJECTIVE

The aim of this systematic review was to provide an objective summary of the published literature pertaining to the use of stereotactic body radiation therapy (SBRT) specific to previously untreated spinal metastases.

METHODS

The authors performed a systematic review, using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, of the literature found in a search of Medline, PubMed, Embase, and the Cochrane Library up to March 2015. The search strategy was limited to publications in the English language.

RESULTS

A total of 14 full-text articles were included in the analysis. All studies were retrospective except for 2 studies, which were prospective. A total of 1024 treated spinal lesions were analyzed. The median follow-up time ranged from 9 to 49 months. A range of dose-fractionation schemes was used, the most common of which were 16–24 Gy/1 fraction (fx), 24 Gy/2 fx, 24–27 Gy/3 fx, and 30–35 Gy/5 fx. In studies that reported crude results regarding in-field local tumor control, 346 (85%) of 407 lesions remained controlled. For studies that reported actuarial values, the weighted average revealed a 90% 1-year local control rate. Only 3 studies reported data on complete pain response, and the weighted average of these results yielded a complete pain response rate of 54%. The most common toxicity was new or progressing vertebral compression fracture, which was observed in 9.4% of cases; 2 cases (0.2%) of neurologic injury were reported.

CONCLUSION

There is a paucity of prospective data specific to SBRT in patients with spinal metastases not otherwise irradiated. This systematic review found that SBRT is associated with favorable rates of local control (approximately 90% at 1 year) and complete pain response (approximately 50%), and low rates of serious adverse events were found. Practice guidelines are summarized based on these data and International Stereotactic Radiosurgery Society consensus.

Restricted access

Stereotactic radiosurgery for trigeminal neuralgia: a systematic review

International Stereotactic Radiosurgery Society practice guidelines

Constantin Tuleasca, Jean Régis, Arjun Sahgal, Antonio De Salles, Motohiro Hayashi, Lijun Ma, Roberto Martínez-Álvarez, Ian Paddick, Samuel Ryu, Ben J. Slotman and Marc Levivier

OBJECTIVES

The aims of this systematic review are to provide an objective summary of the published literature specific to the treatment of classical trigeminal neuralgia with stereotactic radiosurgery (RS) and to develop consensus guideline recommendations for the use of RS, as endorsed by the International Society of Stereotactic Radiosurgery (ISRS).

METHODS

The authors performed a systematic review of the English-language literature from 1951 up to December 2015 using the Embase, PubMed, and MEDLINE databases. The following MeSH terms were used in a title and abstract screening: “radiosurgery” AND “trigeminal.” Of the 585 initial results obtained, the authors performed a full text screening of 185 studies and ultimately found 65 eligible studies. Guideline recommendations were based on level of evidence and level of consensus, the latter predefined as at least 85% agreement among the ISRS guideline committee members.

RESULTS

The results for 65 studies (6461 patients) are reported: 45 Gamma Knife RS (GKS) studies (5687 patients [88%]), 11 linear accelerator (LINAC) RS studies (511 patients [8%]), and 9 CyberKnife RS (CKR) studies (263 patients [4%]). With the exception of one prospective study, all studies were retrospective.

The mean maximal doses were 71.1–90.1 Gy (prescribed at the 100% isodose line) for GKS, 83.3 Gy for LINAC, and 64.3–80.5 Gy for CKR (the latter two prescribed at the 80% or 90% isodose lines, respectively). The ranges of maximal doses were as follows: 60–97 Gy for GKS, 50–90 Gy for LINAC, and 66–90 Gy for CKR.

Actuarial initial freedom from pain (FFP) without medication ranged from 28.6% to 100% (mean 53.1%, median 52.1%) for GKS, from 17.3% to 76% (mean 49.3%, median 43.2%) for LINAC, and from 40% to 72% (mean 56.3%, median 58%) for CKR. Specific to hypesthesia, the crude rates (all Barrow Neurological Institute Pain Intensity Scale scores included) ranged from 0% to 68.8% (mean 21.7%, median 19%) for GKS, from 11.4% to 49.7% (mean 27.6%, median 28.5%) for LINAC, and from 11.8% to 51.2% (mean 29.1%, median 18.7%) for CKR. Other complications included dysesthesias, paresthesias, dry eye, deafferentation pain, and keratitis. Hypesthesia and paresthesia occurred as complications only when the anterior retrogasserian portion of the trigeminal nerve was targeted, whereas the other listed complications occurred when the root entry zone was targeted. Recurrence rates ranged from 0% to 52.2% (mean 24.6%, median 23%) for GKS, from 19% to 63% (mean 32.2%, median 29%) for LINAC, and from 15.8% to 33% (mean 25.8%, median 27.2%) for CKR. Two GKS series reported 30% and 45.3% of patients who were pain free without medication at 10 years.

CONCLUSIONS

The literature is limited in its level of evidence, with only one comparative randomized trial (1 vs 2 isocenters) reported to date. At present, one can conclude that RS is a safe and effective therapy for drug-resistant trigeminal neuralgia. A number of consensus statements have been made and endorsed by the ISRS.

Free access

Kristin J. Redmond, Simon S. Lo, Scott G. Soltys, Yoshiya Yamada, Igor J. Barani, Paul D. Brown, Eric L. Chang, Peter C. Gerszten, Samuel T. Chao, Robert J. Amdur, Antonio A. F. De Salles, Matthias Guckenberger, Bin S. Teh, Jason Sheehan, Charles R. Kersh, Michael G. Fehlings, Moon-Jun Sohn, Ung-Kyu Chang, Samuel Ryu, Iris C. Gibbs and Arjun Sahgal

OBJECTIVE

Although postoperative stereotactic body radiation therapy (SBRT) for spinal metastases is increasingly performed, few guidelines exist for this application. The purpose of this study is to develop consensus guidelines to promote safe and effective treatment for patients with spinal metastases.

METHODS

Fifteen radiation oncologists and 5 neurosurgeons, representing 19 centers in 4 countries and having a collective experience of more than 1300 postoperative spine SBRT cases, completed a 19-question survey about postoperative spine SBRT practice. Responses were defined as follows: 1) consensus: selected by ≥ 75% of respondents; 2) predominant: selected by 50% of respondents or more; and 3) controversial: no single response selected by a majority of respondents.

RESULTS

Consensus treatment indications included: radioresistant primary, 1–2 levels of adjacent disease, and previous radiation therapy. Contraindications included: involvement of more than 3 contiguous vertebral bodies, ASIA Grade A status (complete spinal cord injury without preservation of motor or sensory function), and postoperative Bilsky Grade 3 residual (cord compression without any CSF around the cord). For treatment planning, co-registration of the preoperative MRI and postoperative T1-weighted MRI (with or without gadolinium) and delineation of the cord on the T2-weighted MRI (and/or CT myelogram in cases of significant hardware artifact) were predominant. Consensus GTV (gross tumor volume) was the postoperative residual tumor based on MRI. Predominant CTV (clinical tumor volume) practice was to include the postoperative bed defined as the entire extent of preoperative tumor, the relevant anatomical compartment and any residual disease. Consensus was achieved with respect to not including the surgical hardware and incision in the CTV. PTV (planning tumor volume) expansion was controversial, ranging from 0 to 2 mm. The spinal cord avoidance structure was predominantly the true cord. Circumferential treatment of the epidural space and margin for paraspinal extension was controversial. Prescription doses and spinal cord tolerances based on clinical scenario, neurological compromise, and prior overlapping treatments were controversial, but reasonable ranges are presented. Fifty percent of those surveyed practiced an integrated boost to areas of residual tumor and density override for hardware within the beam path. Acceptable PTV coverage was controversial, but consensus was achieved with respect to compromising coverage to meet cord constraint and fractionation to improve coverage while meeting cord constraint.

CONCLUSIONS

The consensus by spinal radiosurgery experts suggests that postoperative SBRT is indicated for radioresistant primary lesions, disease confined to 1–2 vertebral levels, and/or prior overlapping radiotherapy. The GTV is the postoperative residual tumor, and the CTV is the postoperative bed defined as the entire extent of preoperative tumor and anatomical compartment plus residual disease. Hardware and scar do not need to be included in CTV. While predominant agreement was reached about treatment planning and definition of organs at risk, future investigation will be critical in better understanding areas of controversy, including whether circumferential treatment of the epidural space is necessary, management of paraspinal extension, and the optimal dose fractionation schedules.

Restricted access

Fang-Fang Yin, Samuel Ryu, Munther Ajlouni, Hui Yan, Jian-Yue Jin, Sung-Woo Lee, Jinkoo Kim, Jack Rock, Mark Rosenblum and Jae Ho Kim

✓ Radiosurgery for brain tumors has been well established in the radiation oncology and neurosurgery fields. Radiosurgery of extracranial tumors such as those involving the spine is, however, still in the early stage because of difficulties in patient immobilization and organ motion. The authors describe an image-guided procedure for intensity-modulated spinal radiosurgery that was developed at Henry Ford Hospital.