Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Samir Sur x
Clear All Modify Search
Free access

Samir Sur, Brian Snelling, Priyank Khandelwal, Justin M. Caplan, Eric C. Peterson, Robert M. Starke and Dileep R. Yavagal


The goals of this study were to describe the authors' recent institutional experience with the transradial approach to anterior circulation large-vessel occlusions (LVOs) in acute ischemic stroke patients and to report its technical feasibility.


The authors reviewed their institutional database to identify patients who underwent mechanical thrombectomy via a transradial approach over the 2 previous years, encompassing their experience using modern techniques including stent retrievers.


Eleven patients were identified. In 8 (72%) of these patients the right radial artery was chosen as the primary access site. In the remaining patients, transfemoral access was initially attempted. Revascularization (modified Treatment in Cerebral Ischemia [mTICI] score ≥ 2b) was achieved in 10 (91%) of 11 cases. The average time to first pass with the stent retriever was 64 minutes. No access-related complications occurred.


Transradial access for mechanical thrombectomy in anterior circulation LVOs is safe and feasible. Further comparative studies are needed to determine criteria for selecting the transradial approach in this setting.

Free access

Georgios A. Zenonos, Samir Sur, Maximiliano Nuñez, David T. Fernandes-Cabral and Jacques J. Morcos

In this 3D video we review the case of a lower pontine cavernous malformation in a 31-year-old man who presented with hemiparesis and an abducens palsy. The cavernous malformation was completely resected through a far lateral approach and a peritrigeminal brainstem entry zone, with a significant improvement in the patient’s hemiparesis. The relevant anatomy is reviewed in detail through multiple anatomical brainstem dissection specimens, as well as high-definition fiber tractography images. The rationale for the approach is analyzed relative to other possible options, and a number of technical pearls are provided.

The video can be found here:

Full access

Aria Fallah, Alexander G. Weil, Samir Sur, Ian Miller, Prasanna Jayakar, Glenn Morrison, Sanjiv Bhatia and John Ragheb


Pediatric brain tumors may be associated with medically intractable epilepsy for which surgery is indicated. The authors sought to evaluate the efficacy of epilepsy surgery for seizure control in pediatric patients with brain tumors.


The authors performed a retrospective review of consecutive patients undergoing resective epilepsy surgery related to pediatric brain tumors at Miami Children’s Hospital between June 1986 and June 2014. Time-to-event analysis for seizure recurrence was performed; an “event” was defined as any seizures that occurred following resective epilepsy surgery, not including seizures and auras in the 1st postoperative week. The authors analyzed several preoperative variables to determine their suitability to predict seizure recurrence following surgery.


Eighty-four patients (47 males) with a mean age (± standard deviation) of 8.7 ± 5.5 years (range 0.5–21.6 years) were included. The study included 39 (46%) patients with gliomas, 20 (24%) with dysembryoplastic neuroepithelial tumors (DNETs), 14 (17%) with gangliogliomas, and 11 (13%) with other etiologies. Among the patients with gliomas, 18 were classified with low-grade glioma, 5 had oligodendroglioma, 6 had uncategorized astrocytoma, 3 had pilocytic astrocytoma, 3 had pleomorphic xanthoastrocytoma, 3 had glioblastoma, and 1 had gliomatosis cerebri. Seventy-nine (94.0%) resections were guided by intraoperative electrocorticography (ECoG). The mean time (± standard deviation) to seizure recurrence was 81.8 ± 6.3 months. Engel Class I outcome was achieved in 66 (78%) and 63 (75%) patients at 1 and 2 years’ follow-up, respectively. Patients with ganglioglioma demonstrated the highest probability of long-term seizure freedom, followed by patients with DNETs and gliomas. In univariate analyses, temporal location (HR 1.75, 95% CI 0.26–1.27, p = 0.171) and completeness of resection (HR 1.69, 95% CI 0.77–3.74, p = 0.191) demonstrated a trend toward a longer duration of seizure freedom.


ECoG-guided epilepsy surgery for pediatric patients with brain tumors is highly effective. Tumors located in the temporal lobe and those in which a complete ECoG-guided resection is performed may result in a greater likelihood of long-term seizure freedom.

Free access

John W. Thompson, Omar Elwardany, David J. McCarthy, Dallas L. Sheinberg, Carlos M. Alvarez, Ahmed Nada, Brian M. Snelling, Stephanie H. Chen, Samir Sur and Robert M. Starke

Cerebral aneurysm rupture is a devastating event resulting in subarachnoid hemorrhage and is associated with significant morbidity and death. Up to 50% of individuals do not survive aneurysm rupture, with the majority of survivors suffering some degree of neurological deficit. Therefore, prior to aneurysm rupture, a large number of diagnosed patients are treated either microsurgically via clipping or endovascularly to prevent aneurysm filling. With the advancement of endovascular surgical techniques and devices, endovascular treatment of cerebral aneurysms is becoming the first-line therapy at many hospitals. Despite this fact, a large number of endovascularly treated patients will have aneurysm recanalization and progression and will require retreatment. The lack of approved pharmacological interventions for cerebral aneurysms and the need for retreatment have led to a growing interest in understanding the molecular, cellular, and physiological determinants of cerebral aneurysm pathogenesis, maturation, and rupture. To this end, the use of animal cerebral aneurysm models has contributed significantly to our current understanding of cerebral aneurysm biology and to the development of and training in endovascular devices. This review summarizes the small and large animal models of cerebral aneurysm that are being used to explore the pathophysiology of cerebral aneurysms, as well as the development of novel endovascular devices for aneurysm treatment.