Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Saman Shabani x
  • Refine by Access: all x
Clear All Modify Search
Free access

Saman Shabani, Mayank Kaushal, Matthew Budde, and Shekar N. Kurpad

OBJECTIVE

Conventional MRI is routinely used to demonstrate the anatomical site of spinal cord injury (SCI). However, quantitative and qualitative imaging parameters have limited use in predicting neurological outcomes. Currently, there are no reliable neuroimaging biomarkers to predict short- and long-term outcome after SCI.

METHODS

A prospective cohort of 23 patients with SCI (19 with cervical SCI [CSCI] and 4 with thoracic SCI [TSCI]) treated between 2007 and 2014 was included in the study. The American Spinal Injury Association (ASIA) score was determined at the time of arrival and at 1-year follow-up. Only 15 patients (12 with CSCI and 3 with TSCI) had 1-year follow-up. Whole-cord fractional anisotropy (FA) was determined at C1–2, following which C1–2 was divided into upper, middle, and lower segments and the corresponding FA value at each of these segments was calculated. Correlation analysis was performed between FA and ASIA score at time of arrival and 1-year follow-up.

RESULTS

Correlation analysis showed a positive but nonsignificant correlation (p = 0.095) between FA and ASIA score for all patients (CSCI and TCSI) at the time of arrival. Additional regression analysis consisting of only patients with CSCI showed a significant correlation (p = 0.008) between FA and ASIA score at time of arrival as well as at 1-year follow-up (p = 0.025). Furthermore, in case of patients with CSCI, a significant correlation between FA value at each of the segments (upper, middle, and lower) of C1–2 and ASIA score at time of arrival was found (p = 0.017, p = 0.015, and p = 0.002, respectively).

CONCLUSIONS

In patients with CSCI, the measurement of diffusion anisotropy of the high cervical cord (C1–2) correlates significantly with injury severity and long-term follow-up. However, this correlation is not seen in patients with TSCI. Therefore, FA can be used as an imaging biomarker for evaluating neural injury and monitoring recovery in patients with CSCI.

Full access

Saman Shabani, Susan M. Fiore, Roberta Seidman, and Raphael P. Davis

The authors present a case of intraspinal malignant psammomatous melanotic schwannoma (PMS) not associated with Carney complex and review all reported cases not associated with this syndrome. The focus of this review paper is on the characteristics of the malignant progression of PMS.

A 54-year-old man had a history of squamous cell carcinoma of the neck and tonsillar carcinoma. The patient’s serial CT scanning study showed a mass in the left C-5 foramen. On presentation he was neurologically intact. After 18 months, the patient developed radiating pain down the left arm with decreased sensation. MRI of the cervical spine showed an enhancing 2.1 × 1.5 × 1.9-cm mass in the left C5–6 foramen. A C5–6 hemilaminectomy was performed with gross-total removal of the tumor. At 3 months postoperatively, the patient developed new-onset pain and weakness. MRI showed a dumbbell-shaped mass in the left C-7 foramen. MRI of the pelvis showed a 1.4 × 1.0-cm lesion on the right ischium and a 1.1 × 2.8-cm lesion on the right inferior pubic ramus. Anterior cervical discectomy of C5–6 and C6–7 with corpectomy of C-6 with subtotal resection of the tumor was completed. PMS should not be considered a benign tumor because in 41.1% of patients, including the patient in this report, the tumor progresses to malignancy. Long-term follow-up is needed in these patients. New surgical treatment plans should be considered.

Open access

Zirun Zhao, Saman Shabani, Nitin Agarwal, Praveen V. Mummaneni, and Dean Chou

BACKGROUND

A three-column osteotomy results in dural buckling, which may appear concerning upon intraoperative visualization because it may appear that the neural elements may also be buckled. The authors presented an intraoperative view after intentional durotomy of the neural elements and the relaxed state of the dura after three-column osteotomy.

OBSERVATIONS

A 52-year-old woman with adult tethered cord syndrome and previous untethering presented with worsening leg pain and stiffness, urinary incontinence, and unbalanced gait. Magnetic resonance imaging demonstrated an arachnoid web at T6 and spinal cord tethering. Spinal column shortening via three-column osteotomy was performed with concomitant intradural excision of the arachnoid web. Dural buckling was observed intraoperatively after spinal column shortening. After the durotomy, the spinal cord was visualized without kinking or buckling.

LESSONS

Dural buckling after spinal column shortening of 15 mm via three-column osteotomy at T6 did not result in concomitant buckling of the underlying neural elements.

Free access

Saman Shabani, Mayank Kaushal, Matthew D. Budde, Marjorie C. Wang, and Shekar N. Kurpad

Degenerative spondylotic myelopathy is the most common cause of spinal dysfunction, as well as nontraumatic spastic paraparesis and quadriparesis. Although conventional MRI is the gold standard for radiographic evaluation of the spinal cord, it has limited application for determining prognosis and recovery. In the last decade, diffusion tensor imaging (DTI), which is based on the property of preferential diffusion of water molecules, has gained popularity in evaluating patients with cervical spondylotic myelopathy (CSM). The use of DTI allows for evaluation of microstructural changes in the spinal cord not otherwise detected on routine conventional MRI. In this review, the authors describe the application of DTI in CSM evaluation and its role as an imaging biomarker to predict disease severity and prognosis.

Open access

Alma Rechav Ben-Natan, Nitin Agarwal, Saman Shabani, Jason Chung, Vivian Le, Dean Chou, and Praveen V. Mummaneni

The development of the 3D exoscope has advanced intraoperative visualization by providing access to visual corridors that were previously difficult to obtain or maintain with traditional operating microscopes. Favorable ergonomics, maneuverability, and increased potential for instruction provide utility in a large range of procedures. Here, the authors demonstrate the exoscope system in a patient with progressive thoracolumbar junctional kyphosis with bony retropulsion of a T12–L1 fracture requiring a Schwab grade 5 osteotomy and fusion. The utilization of the exoscope provides visual access to the ventrolateral dura for the entire surgical team (surgeons, learners, and scrub nurse).

The video can be found here: https://stream.cadmore.media/r10.3171/2021.10.FOCVID21190

Restricted access

Saman Shabani, Mayank Kaushal, Matthew Budde, Brian Schmit, Marjorie C. Wang, and Shekar Kurpad

OBJECTIVE

Cervical spondylotic myelopathy (CSM) is a common cause of spinal cord dysfunction. Recently, it has been shown that diffusion tensor imaging (DTI) may be a better biomarker than T2-weighted signal intensity (T2SI) on MRI for CSM. However, there is very little literature on a comparison between the quantitative measurements of DTI and T2SI in the CSM patient population to determine disease severity and recovery.

METHODS

A prospective analysis of 46 patients with both preoperative DTI and T2-weighted MRI was undertaken. Normalized T2SI (NT2SI), regardless of the presence or absence of T2SI at the level of maximum compression (LMC), was determined by calculating the T2SI at the LMC/T2SI at the level of the foramen magnum. Regression analysis was performed to determine the relationship of fractional anisotropy (FA), a quantitative measure derived from DTI, and NT2SI individually as well their combination with baseline preoperative modified Japanese Orthopaedic Association (mJOA) score and ∆mJOA score at the 3-, 6-, 12-, and 24-month follow-ups. Goodness-of-fit analysis was done using residual diagnostics. In addition, mixed-effects regression analysis was used to evaluate the impact of FA and NT2SI individually. A p value < 0.05 was selected to indicate statistical significance.

RESULTS

Regression analysis showed a significant positive correlation between FA at the LMC and preoperative mJOA score (p = 0.041) but a significant negative correlation between FA at the LMC and the ΔmJOA score at the 12-month follow-up (p = 0.010). All other relationships between FA at the LMC and the baseline preoperative mJOA score or ∆mJOA score at the 3-, 6-, and 24-month follow-ups were not statistically significant. For NT2SI and the combination of FA and NT2SI, no significant relationships with preoperative mJOA score or ∆mJOA at 3, 6, and 24 months were seen on regression analysis. However, there was a significant correlation of combined FA and NT2SI with ∆mJOA score at the 12-month follow-up. Mixed-effects regression revealed that FA measured at the LMC was the only significant predictor of ΔmJOA score (p = 0.03), whereas NT2SI and time were not. Goodness-of-fit analysis did not show any evidence of lack of fit.

CONCLUSIONS

In this large prospective study of CSM patients, FA at LMC appears to be a better biomarker for determining long-term outcomes following surgery in CSM patients than NT2SI or the combination values at LMC.

Free access

Vijay Letchuman, Nitin Agarwal, Valli P. Mummaneni, Michael Y. Wang, Saman Shabani, Arati Patel, Joshua Rivera, Alexander F. Haddad, Vivian Le, Joyce M. Chang, Dean Chou, Seema Gandhi, and Praveen V. Mummaneni

OBJECTIVE

There is a learning curve for surgeons performing “awake” spinal surgery. No comprehensive guidelines have been proposed for the selection of ideal candidates for awake spinal fusion or decompression. The authors sought to formulate an algorithm to aid in patient selection for surgeons who are in the startup phase of awake spinal surgery.

METHODS

The authors developed an algorithm for selecting patients appropriate for awake spinal fusion or decompression using spinal anesthesia supplemented with mild sedation and local analgesia. The anesthetic protocol that was used has previously been reported in the literature. This algorithm was formulated based on a multidisciplinary team meeting and used in the first 15 patients who underwent awake lumbar surgery at a single institution.

RESULTS

A total of 15 patients who underwent decompression or lumbar fusion using the awake protocol were reviewed. The mean patient age was 61 ± 12 years, with a median BMI of 25.3 (IQR 2.7) and a mean Charlson Comorbidity Index of 2.1 ± 1.7; 7 patients (47%) were female. Key patient inclusion criteria were no history of anxiety, 1 to 2 levels of lumbar pathology, moderate stenosis and/or grade I spondylolisthesis, and no prior lumbar surgery at the level where the needle is introduced for anesthesia. Key exclusion criteria included severe and critical central canal stenosis or patients who did not meet the inclusion criteria. Using the novel algorithm, 14 patients (93%) successfully underwent awake spinal surgery without conversion to general anesthesia. One patient (7%) was converted to general anesthesia due to insufficient analgesia from spinal anesthesia. Overall, 93% (n = 14) of the patients were assessed as American Society of Anesthesiologists class II, with 1 patient (7%) as class III. The mean operative time was 115 minutes (± 60 minutes) with a mean estimated blood loss of 46 ± 39 mL. The median hospital length of stay was 1.3 days (IQR 0.1 days). No patients developed postoperative complications and only 1 patient (7%) required reoperation. The mean Oswestry Disability Index score decreased following operative intervention by 5.1 ± 10.8.

CONCLUSIONS

The authors propose an easy-to-use patient selection algorithm with the aim of assisting surgeons with patient selection for awake spinal surgery while considering BMI, patient anxiety, levels of surgery, and the extent of stenosis. The algorithm is specifically intended to assist surgeons who are in the learning curve of their first awake spinal surgery cases.