Search Results

You are looking at 1 - 10 of 27 items for

  • Author or Editor: Ryszard M. Pluta x
Clear All Modify Search
Restricted access

Ryszard M. Pluta, Anna Deka-Starosta, Alois Zauner, Jay K. Morgan, Karin M. Muraszko and Edward H. Oldfield

✓ The cause of cerebral vasospasm after subarachnoid hemorrhage (SAH) remains unknown. Recently, an association between the potent vasoconstricting peptide, neuropeptide Y, and delayed cerebral vasospasm after SAH has been postulated. This was based on the findings of increased neuropeptide Y levels in the cerebrospinal fluid (CSF) and plasma after SAH in animals and humans. For this study, the primate model of SAH was used to assess the possible role of neuropeptide Y in delayed vasospasm after SAH. Fifteen cynomolgus monkeys underwent placement of a clot of either whole blood or red blood cells in the subarachnoid space around the middle cerebral artery (MCA). Sequential arteriography for assessment of MCA diameter and sampling of blood and CSF for neuropeptide Y were performed: before SAH (Day 0); 7 days after SAH, when signs of delayed cerebral vasospasm peak in this model and in humans; 12 days after SAH; and 28 days after SAH.

Subarachnoid hemorrhage did not evoke changes in CSF or plasma levels of neuropeptide Y. Nine monkeys had arteriographic evidence of vasospasm on Day 7, but no change in neuropeptide Y levels occurred in plasma or CSF. In addition, neuropeptide Y levels did not change, even after resolution of vasospasm on Day 12 or Day 28. Neuropeptide Y levels were substantially higher in CSF than in arterial plasma (p < 0.003 at each interval). No correlation was found between neuropeptide Y levels in CSF and in plasma. These results do not confirm a relationship between neuropeptide Y levels in the CSF or peripheral plasma and delayed cerebral vasospasm in SAH.

Restricted access

Ryszard M. Pluta, Alois Zauner, Jay K. Morgan, Karin M. Muraszko and Edward H. Oldfield

✓ Although proliferative arteriopathy has been postulated to play a role in the etiology of vasospasm after subarachnoid hemorrhage (SAH), histological and morphological studies examining cerebral vasospasm have produced conflicting results. To help settle this controversy, the authors used an in vivo label of cell division, bromodeoxycytidine, to assess cell proliferation in a primate model of SAH.

Fifteen cynomolgus monkeys received a clot of either whole blood (11 animals) or red blood cells (four animals) placed around the right middle cerebral artery (MCA). On the day of surgery continuous intravenous infusion of bromodeoxycytidine was begun and continued until the animal was sacrificed immediately after arteriography on Day 7, 12, or 27 following surgery. Sections from the right and left MCA's were stained with a monoclonal antibody against bromodeoxcytidine, and labeled cells were counted.

Arteriographic evidence of vasospasm occurred in nine monkeys on Day 7. On Day 12 and Day 27 no monkeys had persistent vasospasm. Placement of subarachnoid clot around the right MCA increased proliferative activity across all layers of the arterial wall. Most of the labeled cells were in the adventitia and the endothelium. Although there were more dividing cells in all layers of the right MCA than the left MCA (p < 0.01), the number of stained cells per section was limited (range 0.1 to 21.2, mean 8) and the occurrence of vasospasm was not associated with the number of dividing cells in the right MCA on Day 7, 12, 27, or for all days combined (p > 0.6).

Cerebral vasospasm after SAH was not associated with the extent of proliferation of cells in the vessel wall, nor could the intensity of the limited proliferative changes have been responsible for narrowing of the vessel diameter.

Restricted access

Ryszard M. Pluta, Zvi Ram, Nicholas J. Patronas and Harry Keiser

✓ A 42-year-old woman presented with otorrhea 22 years after extracranial resection of a norepinephrinesecreting glomus jugulare tumor with intravascular embolization and radiation therapy to the intracranial portion of the tumor. Tumor growth was arrested and was associated with a decrease in blood and urine norepinephrine levels. Extensive evaluation of the otorrhea, including computerized tomography-cisternography, gadoliniumenhanced magnetic resonance imaging, and arteriography showed marked diffuse necrosis of the temporal bone and skull base with limited tumor vascularity. Cerebrospinal fluid (CSF) collected from the right ear showed norepinephrine levels of 2975 pg/ml; plasma norepinephrine levels were normal. The precise site of CSF leakage could not be delineated. Exploration of the posterior fossa revealed a large dural defect at the anteromedial aspect of the petrous bone through which CSF flowed over the surface of the residual extradural glomus tumor. The defect was successfully sealed with a fascial patch. Postoperatively, CSF norepinephrine levels were normal and no further leakage was observed.

Restricted access

John K. B. Afshar, Ryszard M. Pluta, Robert J. Boock, B. Gregory Thompson and Edward H. Oldfield

✓ The continuous release of nitric oxide (NO) is required to maintain basal cerebrovascular tone. Oxyhemoglobin, a putative spasmogen, rapidly binds NO, implicating loss of NO in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage (SAH). If vasospasm is mediated by depletion of NO in the vessel wall, it should be reversible by replacement with NO. To investigate this hypothesis, the authors placed blood clots around the right middle cerebral artery (RMCA) of four cynomolgus monkeys; four unoperated animals served as controls. Arteriography was performed before and 7 days after surgery to assess the presence and degree of vasospasm, which was quantified in the anteroposterior (AP) projection by computerized image analysis. On Day 7, cortical cerebral blood flow (CBF) in the distribution of the right MCA was measured during four to six runs in the right internal carotid artery (ICA) of brief infusions of saline followed by NO solution. Arteriography was performed immediately after completing the final NO infusion in three of the four animals with vasospasm. Right MCA blood flow velocities were obtained using transcranial Doppler before, during, and after NO infusion in two vasospastic animals.

After ICA NO infusion, arteriographic vasospasm resolved (mean percent of preoperative AP area, 55.9%); that is, the AP areas of the proximal portion of the right MCA returned to their preoperative values (mean 91.4%; range 88%–96%). Compared to ICA saline, during ICA NO infusion CBF increased 7% in control animals and 19% in vasospastic animals (p < 0.002) without significant changes in other physiological parameters. During NO infusion, peak systolic right MCA CBF velocity decreased (130 to 109 cm/sec and 116 to 76 cm/sec) in two vasospastic animals. The effects of ICA NO on CBF and CBF velocity disappeared shortly after terminating NO infusion.

Intracarotid infusion of NO in a primate model of vasospasm 1) increases CBF, 2) decreases cerebral vascular resistance, 3) reverses arteriographic vasospasm, and 4) decreases CBF velocity in the vasospastic artery without producing systemic hypotension. These findings indicate the potential for the development of targeted therapy to reverse cerebral vasospasm after SAH.

Restricted access

B. Gregory Thompson, Ryszard M. Pluta, Mary E. Girton and Edward H. Oldfield

✓ The authors sought to develop a model for assessing in vivo regulation of cerebral vasoregulation by nitric oxide (NO), originally described as endothelial-derived relaxing factor, and to use this model to establish the role of NO in the regulation of cerebral blood flow (CBF) in primates. By using regional intraarterial perfusion, the function of NO in cerebral vasoregulation was examined without producing confounding systemic physiological effects. Issues examined were: whether resting vasomotor tone requires NO; whether NO mediates vasodilation during chemoregulation and autoregulation of CBF; and whether there is a relationship between the degree of hypercapnia and hypotension and NO production. Twelve anesthetized (0.5% isoflurane) cynomolgus monkeys were monitored continuously for cortical CBF, PaCO2, and mean arterial pressure (MAP), which were systematically altered to provide control and experimental curves of chemoregulation (CBF vs. PaCO2) and autoregulation (CBF vs. MAP) during continuous intracarotid infusion of 1) saline and 2) an NO synthase inhibitor (NOSI), either l-n-monomethyl arginine or nitro l-arginine.

During basal conditions (PaCO2 of 38–42 mm Hg) NOSI infusion of internal carotid artery (ICA) reduced cortical CBF from 62 (saline) to 53 ml/100 g/per minute (p < 0.01), although there was no effect on MAP. Increased CBF in response to hypercapnia was completely blocked by ICA NOSI. The difference in regional (r)CBF between ICA saline and NOSI infusion increased linearly with PaCO2 when PaCO2 was greater than 40 mm Hg, indicating a graded relationship of NO production, increasing PaCO2, and increasing CBF. Diminution of CBF with NOSI infusion was reversed by simultaneous ICA infusion of l-arginine, indicating a direct role of NO synthesis in the chemoregulation of CBF.

Hypotension and hypertension were induced with trimethaphan camsylate (Arfonad) and phenylephrine at constant PaCO2 (40 ± 1 mm Hg). Autoregulation in response to changes in MAP from 50 to 140 mm Hg was unaffected by ICA infusion of NOSI.

In primates, cerebral vascular tone is modulated in vivo by NO; continuous release of NO is necessary to maintain homeostatic cerebral vasodilation; vasodilation during chemoregulation of CBF is mediated directly by NO production; autoregulatory vasodilation with hypotension is not mediated by NO; and increasing PaCO2 induces increased NO production.

Restricted access

Ryszard M. Pluta, B. Gregory Thompson, Ted M. Dawson, Solomon H. Snyder, Robert J. Boock and Edward H. Oldfield

✓ To determine the distribution of nitric oxide synthase (NOS) in the primate cerebral artery nervi vasorum and to examine the potential role of NOS in cerebral vasospasm after subarachnoid hemorrhage (SAH) in primates, the distribution of NOS immunoreactivity (NOS-IR) in the major cerebral arteries was examined immunohistochemically in cynomolgus monkeys by the use of whole, mounted preparations of the circle of Willis. In four normal monkeys, NOS-IR was localized to the endothelial and adventitial layers of the large cerebral arteries. On the abluminal side, NOS-IR staining was densely concentrated in perivascular nerve fibers (nervi vasorum) of the anterior circulation. Staining was less prominent in the posterior circulation. In six monkeys with vasospasm on Day 7 after placement of preclotted arterial blood to form an SAH around the right middle cerebral artery (MCA) (42% ± 8.3% decrease of MCA area, mean ± standard deviation), NOS-IR was virtually absent in nerve fibers around the spastic right MCA but was normal on the contralateral side. In five monkeys in which vasospasm resolved by Day 14 after SAH (36% ± 14% decrease of right MCA area on Day 7, and 5% ± 14% decrease on Day 14), NOS-IR was also absent in the right MCA adventitial nerve fibers and remained normal in the left MCA. Adventitial NOS-IR was also normal in cerebral vessels of a sham-operated, nonspastic monkey.

These findings provide further evidence that nitric oxide (NO) functions as a neuronal transmitter to mediate vasodilation in primates and indicate a role for adventitial NO in the pathogenesis of cerebral vasospasm after SAH in humans.

Restricted access

Ryszard M. Pluta, Robert J. Boock, John K. Afshar, Kathleen Clouse, Mima Bacic, Hannelore Ehrenreich and Edward H. Oldfield

✓ Despite years of research, delayed cerebral vasospasm remains a serious complication of subarachnoid hemorrhage (SAH). Recently, it has been proposed that endothelin-1 (ET-1) mediates vasospasm. The authors examined this hypothesis in a series of experiments. In a primate model of SAH, serial ET-1 levels were measured in samples from the perivascular space by using a microdialysis technique and in cerebrospinal fluid (CSF) and plasma during the development and resolution of delayed vasospasm. To determine whether elevated ET-1 production was a direct cause of vasospasm or acted secondary to ischemia, the authors also measured ET-1 levels in plasma and CSF after transient cerebral ischemia. To elucidate the source of ET-1, they measured its production in cultures of endothelial cells and astrocytes exposed to oxyhemoglobin (10 µM), methemoglobin (10 µM), or hypoxia (11% oxygen).

There was no correlation between the perivascular levels of ET-1 and the development of vasospasm or its resolution. Cerebrospinal fluid and plasma levels of ET-1 were not affected by vasospasm (CSF ET-1 levels were 9.3 ± 2.2 pg/ml and ET-1 plasma levels were 1.2 ± 0.6 pg/ml) before SAH and remained unchanged when vasospasm developed (7.1 ± 1.7 pg/ml in CSF and 2.7 ± 1.5 pg/ml in plasma). Transient cerebral ischemia evoked an increase of ET-1 levels in CSF (1 ± 0.4 pg/ml at the occlusion vs. 3.1 ± 0.6 pg/ml 4 hours after reperfusion; p < 0.05), which returned to normal (0.7 ± 0.3 pg/ml) after 24 hours. Endothelial cells and astrocytes in culture showed inhibition of ET-1 production 6 hours after exposure to hemoglobins. Hypoxia inhibited ET-1 release by endothelial cells at 24 hours (6.4 ± 0.8 pg/ml vs. 0.1 ± 0.1 pg/ml, control vs. hypoxic endothelial cells; p < 0.05) and at 48 hours (6.4 ± 0.6 pg/ml vs. 0 ± 0.1 pg/ml, control vs. hypoxic endothelial cells; p < 0.05), but in astrocytes hypoxia induced an increase of ET-1 at 6 hours (1.5 ± 0.6 vs. 6.4 ± 1.1 pg/ml, control vs. hypoxic astrocytes; p < 0.05).

Endothelin-1 is released from astrocytes, but not endothelial cells, during hypoxia and is released from the brain after transient ischemia. There is no relationship between ET-1 and vasospasm in vivo or between ET-1 and oxyhemoglobin, a putative agent of vasospasm, in vitro. The increase in ET-1 levels in CSF after SAH from a ruptured intracranial aneurysm appears to be the result of cerebral ischemia rather than reflecting the cause of cerebral vasospasm.

Full access

Ryszard M. Pluta, Robert J. Boock, John K. Afshar, Kathleen Clouse, Mima Bacic, Hannelore Ehrenreich and Edward H. Oldfield

Despite years of research, delayed cerebral vasospasm remains a serious complication of subarachnoid hemorrhage (SAH). Recently, it has been proposed that endothelin-1 (ET-1) mediates vasospasm. The authors examined this hypothesis in a series of experiments. In a primate model of SAH, serial ET-1 levels were measured in samples from the perivascular space by using a microdialysis technique and in cerebrospinal fluid (CSF) and plasma during the development and resolution of delayed vasospasm. To determine whether elevated ET-1 production was a direct cause of vasospasm or acted secondary to ischemia, the authors also measured ET-1 levels in plasma and CSF after transient cerebral ischemia. To elucidate the source of ET-1, they measured its production in cultures of endothelial cells and astrocytes exposed to oxyhemoglobin (10 μM), methemoglobin (10 μM), or hypoxia (11% oxygen).

There was no correlation between the perivascular levels of ET-1 and the development of vasospasm or its resolution. Cerebrospinal fluid and plasma levels of ET-1 were not affected by vasospasm (CSF ET-1 levels were 9.3 ± 2.2 pg/ml and ET-1 plasma levels were 1.2 ± 0.6 pg/ml) before SAH and remained unchanged when vasospasm developed (7.1 ± 1.7 pg/ml in CSF and 2.7 ± 1.5 pg/ml in plasma). Transient cerebral ischemia evoked an increase of ET-1 levels in CSF (1 ± 0.4 pg/ml at the occlusion vs. 3.1 ± 0.6 pg/ml 4 hours after reperfusion; p < 0.05), which returned to normal (0.7 ± 0.3 pg/ml) after 24 hours. Endothelial cells and astrocytes in culture showed inhibition of ET-1 production 6 hours after exposure to hemoglobins. Hypoxia inhibited ET-1 release by endothelial cells at 24 hours (6.4 ± 0.8 pg/ml vs. 0.1 ± 0.1 pg/ml, control vs. hypoxic endothelial cells; p < 0.05) and at 48 hours (6.4 ± 0.6 pg/ml vs. 0 ± 0.1 pg/ml, control vs. hypoxic endothelial cells; p < 0.05), but in astrocytes hypoxia induced an increase of ET-1 at 6 hours (1.5 ± 0.6 vs. 6.4 ± 1.1 pg/ml, control vs. hypoxic astrocytes; p < 0.05).

Endothelin-1 is released from astrocytes, but not endothelial cells, during hypoxia and is released from the brain after transient ischemia. There is no relationship between ET-1 and vasospasm in vivo or between ET-1 and oxyhemoglobin, a putative agent of vasospasm, in vitro. The increase in ET-1 levels in CSF after SAH from a ruptured intracranial aneurysm appears to be the result of cerebral ischemia rather than reflecting the cause of cerebral vasospasm.

Restricted access

Ryszard M. Pluta, Edward H. Oldfield and Robert J. Boock

✓ Decreased endothelium-derived relaxing factor, nitric oxide (NO), in the arterial wall has been hypothesized to be a potential cause of cerebral vasospasm following subarachnoid hemorrhage (SAH). The authors sought to determine whether intracarotid infusions of newly developed NO-donating compounds (NONOates) could reverse vasospasm or prevent the occurrence of cerebral vasospasm in a primate model of SAH. Twenty-one cynomolgus monkeys were studied in two experimental settings. In an acute infusion experiment, saline or NONOate was infused intracarotidly in four normal monkeys and in four monkeys after onset of SAH. During the infusions regional cerebral blood flow (rCBF) was measured in eight animals and CBF velocity in two. In a chronic infusion experiment, saline (four animals) or NONOate (diethylamine-NO [three animals] or proli-NO [six animals]) was infused intracarotidly in monkeys for 7 days after SAH. In acute infusion experiments, 3-minute intracarotid diethylamine-NO infusions reversed arteriographically confirmed vasospasm of the right middle cerebral artery (MCA) (as viewed on anteroposterior projection, the decrease in area was 8.4 ± 4.3% in the treatment group compared with 35 ± 12% in the control group; p < 0.004), increased rCBF by 31 ± 1.9% (p < 0.002), and decreased the mean systolic CBF velocity in the right MCA. In a long-term infusion experiment, the area of the right MCA in control animals decreased by 63 ± 5%. In animals undergoing a 7-day continuous glucantime-NO intracarotid infusion, the area of the right MCA decreased by 15 ± 6.2%, and in animals undergoing a 7-day proli-NO infusion, the area of the right MCA decreased by 11 ± 2.9% (p < 0.05). The mean arterial blood pressure decreased in the glucantime-NO group from 75 ± 12 mm Hg (during saline infusion) to 57 ± 10 mm Hg (during glucantime-NO infusion; p < 0.05), but it was unchanged in animals undergoing proli-NO infusion (76 ± 12 mm Hg vs. 78 ± 12 mm Hg). Results of these experiments show that cerebral vasospasm is both reversed and completely prevented by NO replacement. However, only the use of regional infusion of the NONOate with an extremely short half-life avoided a concomitant decrease in arterial blood pressure, which could produce cerebral ischemia in patients with impaired autoregulation of CBF after the rupture of an intracranial aneurysm.

Restricted access

Laura L. Horky, Ryszard M. Pluta, Robert J. Boock and Edward H. Oldfield

Object. Oxyhemoglobin (HbO2) causes vasospasm after subarachnoid hemorrhage (SAH). The most likely spasmogenic component of HbO2 is iron. Various iron chelators, such as deferoxamine, have prevented vasospasm in vivo with limited success. However, only chelators of iron in the ferric state have been studied in animal models of vasospasm after SAH. Because free radical formation requires the ferrous (Fe++) moiety and Fe++ is a potent binder of the vasodilator nitric oxide, the authors hypothesized that iron in the ferrous state causes vasospasm and that chelators of Fe++, such as 2,2′-dipyridyl, may prevent vasospasm. This study was undertaken to investigate the influence of 2,2′-dipyridyl on vasospasm after induction of SAH in a primate model.

Methods. Twelve cynomolgus monkeys were randomly divided into two groups and then both groups underwent placement of an arterial autologous blood clot in the subarachnoid space around the right middle cerebral artery (MCA). The five animals in the control group received intravenously administered saline and the seven treated animals received intravenously administered chelator (2,2′-dipyridyl) for 14 days. Sequential arteriography for assessment of MCA diameter was performed before and on the 7th day after SAH.

Conclusions. Prevention of cerebral vasospasm by means of treatment with continuous intravenous administration of 2,2′-dipyridyl is reported in a primate model of SAH. This result provides insight into the possible mechanism of delayed vasospasm after aneurysmal SAH and provides a potential preventive therapy for it.