Search Results

You are looking at 1 - 10 of 27 items for

  • Author or Editor: Ryszard M. Pluta x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Ryszard M. Pluta, Edward H. Oldfield, and Robert J. Boock

✓ Decreased endothelium-derived relaxing factor, nitric oxide (NO), in the arterial wall has been hypothesized to be a potential cause of cerebral vasospasm following subarachnoid hemorrhage (SAH). The authors sought to determine whether intracarotid infusions of newly developed NO-donating compounds (NONOates) could reverse vasospasm or prevent the occurrence of cerebral vasospasm in a primate model of SAH. Twenty-one cynomolgus monkeys were studied in two experimental settings. In an acute infusion experiment, saline or NONOate was infused intracarotidly in four normal monkeys and in four monkeys after onset of SAH. During the infusions regional cerebral blood flow (rCBF) was measured in eight animals and CBF velocity in two. In a chronic infusion experiment, saline (four animals) or NONOate (diethylamine-NO [three animals] or proli-NO [six animals]) was infused intracarotidly in monkeys for 7 days after SAH. In acute infusion experiments, 3-minute intracarotid diethylamine-NO infusions reversed arteriographically confirmed vasospasm of the right middle cerebral artery (MCA) (as viewed on anteroposterior projection, the decrease in area was 8.4 ± 4.3% in the treatment group compared with 35 ± 12% in the control group; p < 0.004), increased rCBF by 31 ± 1.9% (p < 0.002), and decreased the mean systolic CBF velocity in the right MCA. In a long-term infusion experiment, the area of the right MCA in control animals decreased by 63 ± 5%. In animals undergoing a 7-day continuous glucantime-NO intracarotid infusion, the area of the right MCA decreased by 15 ± 6.2%, and in animals undergoing a 7-day proli-NO infusion, the area of the right MCA decreased by 11 ± 2.9% (p < 0.05). The mean arterial blood pressure decreased in the glucantime-NO group from 75 ± 12 mm Hg (during saline infusion) to 57 ± 10 mm Hg (during glucantime-NO infusion; p < 0.05), but it was unchanged in animals undergoing proli-NO infusion (76 ± 12 mm Hg vs. 78 ± 12 mm Hg). Results of these experiments show that cerebral vasospasm is both reversed and completely prevented by NO replacement. However, only the use of regional infusion of the NONOate with an extremely short half-life avoided a concomitant decrease in arterial blood pressure, which could produce cerebral ischemia in patients with impaired autoregulation of CBF after the rupture of an intracranial aneurysm.

Restricted access
Restricted access

Ryszard M. Pluta, Zvi Ram, Nicholas J. Patronas, and Harry Keiser

✓ A 42-year-old woman presented with otorrhea 22 years after extracranial resection of a norepinephrinesecreting glomus jugulare tumor with intravascular embolization and radiation therapy to the intracranial portion of the tumor. Tumor growth was arrested and was associated with a decrease in blood and urine norepinephrine levels. Extensive evaluation of the otorrhea, including computerized tomography-cisternography, gadoliniumenhanced magnetic resonance imaging, and arteriography showed marked diffuse necrosis of the temporal bone and skull base with limited tumor vascularity. Cerebrospinal fluid (CSF) collected from the right ear showed norepinephrine levels of 2975 pg/ml; plasma norepinephrine levels were normal. The precise site of CSF leakage could not be delineated. Exploration of the posterior fossa revealed a large dural defect at the anteromedial aspect of the petrous bone through which CSF flowed over the surface of the residual extradural glomus tumor. The defect was successfully sealed with a fascial patch. Postoperatively, CSF norepinephrine levels were normal and no further leakage was observed.

Restricted access

B. Gregory Thompson, Ryszard M. Pluta, Mary E. Girton, and Edward H. Oldfield

✓ The authors sought to develop a model for assessing in vivo regulation of cerebral vasoregulation by nitric oxide (NO), originally described as endothelial-derived relaxing factor, and to use this model to establish the role of NO in the regulation of cerebral blood flow (CBF) in primates. By using regional intraarterial perfusion, the function of NO in cerebral vasoregulation was examined without producing confounding systemic physiological effects. Issues examined were: whether resting vasomotor tone requires NO; whether NO mediates vasodilation during chemoregulation and autoregulation of CBF; and whether there is a relationship between the degree of hypercapnia and hypotension and NO production. Twelve anesthetized (0.5% isoflurane) cynomolgus monkeys were monitored continuously for cortical CBF, PaCO2, and mean arterial pressure (MAP), which were systematically altered to provide control and experimental curves of chemoregulation (CBF vs. PaCO2) and autoregulation (CBF vs. MAP) during continuous intracarotid infusion of 1) saline and 2) an NO synthase inhibitor (NOSI), either l-n-monomethyl arginine or nitro l-arginine.

During basal conditions (PaCO2 of 38–42 mm Hg) NOSI infusion of internal carotid artery (ICA) reduced cortical CBF from 62 (saline) to 53 ml/100 g/per minute (p < 0.01), although there was no effect on MAP. Increased CBF in response to hypercapnia was completely blocked by ICA NOSI. The difference in regional (r)CBF between ICA saline and NOSI infusion increased linearly with PaCO2 when PaCO2 was greater than 40 mm Hg, indicating a graded relationship of NO production, increasing PaCO2, and increasing CBF. Diminution of CBF with NOSI infusion was reversed by simultaneous ICA infusion of l-arginine, indicating a direct role of NO synthesis in the chemoregulation of CBF.

Hypotension and hypertension were induced with trimethaphan camsylate (Arfonad) and phenylephrine at constant PaCO2 (40 ± 1 mm Hg). Autoregulation in response to changes in MAP from 50 to 140 mm Hg was unaffected by ICA infusion of NOSI.

In primates, cerebral vascular tone is modulated in vivo by NO; continuous release of NO is necessary to maintain homeostatic cerebral vasodilation; vasodilation during chemoregulation of CBF is mediated directly by NO production; autoregulatory vasodilation with hypotension is not mediated by NO; and increasing PaCO2 induces increased NO production.

Restricted access

Ryszard M. Pluta, Alois Zauner, Jay K. Morgan, Karin M. Muraszko, and Edward H. Oldfield

✓ Although proliferative arteriopathy has been postulated to play a role in the etiology of vasospasm after subarachnoid hemorrhage (SAH), histological and morphological studies examining cerebral vasospasm have produced conflicting results. To help settle this controversy, the authors used an in vivo label of cell division, bromodeoxycytidine, to assess cell proliferation in a primate model of SAH.

Fifteen cynomolgus monkeys received a clot of either whole blood (11 animals) or red blood cells (four animals) placed around the right middle cerebral artery (MCA). On the day of surgery continuous intravenous infusion of bromodeoxycytidine was begun and continued until the animal was sacrificed immediately after arteriography on Day 7, 12, or 27 following surgery. Sections from the right and left MCA's were stained with a monoclonal antibody against bromodeoxcytidine, and labeled cells were counted.

Arteriographic evidence of vasospasm occurred in nine monkeys on Day 7. On Day 12 and Day 27 no monkeys had persistent vasospasm. Placement of subarachnoid clot around the right MCA increased proliferative activity across all layers of the arterial wall. Most of the labeled cells were in the adventitia and the endothelium. Although there were more dividing cells in all layers of the right MCA than the left MCA (p < 0.01), the number of stained cells per section was limited (range 0.1 to 21.2, mean 8) and the occurrence of vasospasm was not associated with the number of dividing cells in the right MCA on Day 7, 12, 27, or for all days combined (p > 0.6).

Cerebral vasospasm after SAH was not associated with the extent of proliferation of cells in the vessel wall, nor could the intensity of the limited proliferative changes have been responsible for narrowing of the vessel diameter.

Restricted access

Ali Reza Fathi, Ryszard M. Pluta, Kamran D. Bakhtian, Meng Qi, and Russell R. Lonser


Subarachnoid hemorrhage (SAH)-induced vasospasm is a significant underlying cause of aneurysm rupture-related morbidity and death. While long-term intravenous infusion of sodium nitrite (NaNO2) can prevent cerebral vasospasm after SAH, it is not known if the intravenous administration of this compound can reverse established SAH-induced vasospasm. To determine if the intravenous infusion of NaNO2 can reverse established vasospasm, the authors infused primates with the compound after SAH-induced vasospasm was established.


Subarachnoid hemorrhage–induced vasospasm was created in 14 cynomolgus macaques via subarachnoid implantation of a 5-ml blood clot. On Day 7 after clot implantation, animals were randomized to either control (saline infusion, 5 monkeys) or treatment groups (intravenous NaNO2 infusion at 300 μg/kg/hr for 3 hours [7 monkeys] or 8 hours [2 monkeys]). Arteriographic vessel diameter was blindly analyzed to determine the degree of vasospasm before, during, and after treatment. Nitric oxide metabolites (nitrite, nitrate, and S-nitrosothiols) were measured in whole blood and CSF.


Moderate-to-severe vasospasm was present in all animals before treatment (control, 36.2% ± 8.8% [mean ± SD]; treatment, 45.5% ± 12.5%; p = 0.9). While saline infusion did not reduce vasospasm, NaNO2 infusion significantly reduced the degree of vasospasm (26.9% ± 7.6%; p = 0.008). Reversal of the vasospasm lasted more than 2 hours after cessation of the infusion and could be maintained with a prolonged infusion. Nitrite (peak value, 3.7 ± 2.1 μmol/L), nitrate (18.2 ± 5.3 μmol/L), and S-nitrosothiols (33.4 ± 11.4 nmol/L) increased significantly in whole blood, and nitrite increased significantly in CSF.


These findings indicate that the intravenous infusion of NaNO2 can reverse SAH-induced vasospasm in primates. Further, these findings indicate that a similar treatment paradigm could be useful in reversing cerebral vasospasm after aneurysmal SAH.

Restricted access

John K. B. Afshar, Ryszard M. Pluta, Robert J. Boock, B. Gregory Thompson, and Edward H. Oldfield

✓ The continuous release of nitric oxide (NO) is required to maintain basal cerebrovascular tone. Oxyhemoglobin, a putative spasmogen, rapidly binds NO, implicating loss of NO in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage (SAH). If vasospasm is mediated by depletion of NO in the vessel wall, it should be reversible by replacement with NO. To investigate this hypothesis, the authors placed blood clots around the right middle cerebral artery (RMCA) of four cynomolgus monkeys; four unoperated animals served as controls. Arteriography was performed before and 7 days after surgery to assess the presence and degree of vasospasm, which was quantified in the anteroposterior (AP) projection by computerized image analysis. On Day 7, cortical cerebral blood flow (CBF) in the distribution of the right MCA was measured during four to six runs in the right internal carotid artery (ICA) of brief infusions of saline followed by NO solution. Arteriography was performed immediately after completing the final NO infusion in three of the four animals with vasospasm. Right MCA blood flow velocities were obtained using transcranial Doppler before, during, and after NO infusion in two vasospastic animals.

After ICA NO infusion, arteriographic vasospasm resolved (mean percent of preoperative AP area, 55.9%); that is, the AP areas of the proximal portion of the right MCA returned to their preoperative values (mean 91.4%; range 88%–96%). Compared to ICA saline, during ICA NO infusion CBF increased 7% in control animals and 19% in vasospastic animals (p < 0.002) without significant changes in other physiological parameters. During NO infusion, peak systolic right MCA CBF velocity decreased (130 to 109 cm/sec and 116 to 76 cm/sec) in two vasospastic animals. The effects of ICA NO on CBF and CBF velocity disappeared shortly after terminating NO infusion.

Intracarotid infusion of NO in a primate model of vasospasm 1) increases CBF, 2) decreases cerebral vascular resistance, 3) reverses arteriographic vasospasm, and 4) decreases CBF velocity in the vasospastic artery without producing systemic hypotension. These findings indicate the potential for the development of targeted therapy to reverse cerebral vasospasm after SAH.

Restricted access

Marc R. Mayberg

Restricted access

Brian A. Iuliano, Ryszard M. Pluta, Carla Jung, and Edward H. Oldfield


Although abnormalities in the control of endothelial vasomotility have been reported in both experimental and clinical studies, the mechanism of the endothelial dysfunction that occurs following subarachnoid hemorrhage (SAH) remains unclear. Because of the absence of previous in vivo studies of endothelial function in cerebral vessels in response to SAH or cerebral vasospasm, the authors investigated endothelium—dependent responses in an established primate model of vasospasm after SAH. Endothelial function was assessed by examining vascular responses to intracarotid injections of various drugs known to act via the endothelium. Drugs that have a rapid total body clearance were selected so that their pharmacological effects would be limited to the cerebral circulation after an intracarotid infusion.


Seventeen adult male cynomolgus monkeys were used. Cerebrovascular endothelium—dependent responses were examined in control animals and in animals with SAH 7, 14, and 21 days after placement of a subarachnoid clot around the right middle cerebral artery. Cortical cerebral blood flow (CBF) and cerebrovascular resistance (CVR) were recorded continuously during 5-minute intracarotid infusions of 5% dextrose vehicle, acetylcholine, histamine, bradykinin, or Calcimycin.

In control animals the intracarotid infusion of acetylcholine produced a significant (7.8 ± 9.5%) increase in CBF and a 9.3 ± 8.7% reduction in CVR in comparison with a control infusion of dextrose vehicle. The responses to acetylcholine disappeared in animals 7 days post-SAH, specifically in the subset of animals in which arteriography confirmed the presence of vasospasm. Infusion of Calcimycin produced no significant changes in CBF or CVR in control animals, but resulted in a significant reduction in CBF and increase in CVR in animals 7 days after SAH and in animals with vasospasm. An infusion of histamine or bradykinin had no significant effect on CBF or CVR.


An intracarotid infusion of acetylcholine, but not one of histamine, bradykinin, or Calcimycin, produced a measurable physiological response in the normal primate cerebrovasculature. Cerebral vasospasm that occurred after SAH produced a pathophysiological effect similar to the endothelial denudation shown in the in vitro experiments of Furchgott and Zawadzki, in which acetylcholine constricted the vessels via activation of receptors on smooth-muscle cells. Changes in vascular responses to acetylcholine and Calcimycin in animals with vasospasm, compared with control animals, provide evidence that endothelial dysfunction plays a key role in the development and/or sustenance of vasospasm after SAH.

Restricted access

Ryszard M. Pluta, Brian Iuliano, Hetty L. Devroom, Tung Nguyen, and Edward H. Oldfield

Object. Von Hippel—Lindau (VHL) disease is an autosomal-dominant neoplastic syndrome with manifestations in multiple organs, which is evoked by the deletion or mutation of a tumor suppressor gene on chromosome 3p25. Spinal hemangioblastomas (40% of VHL disease—associated lesions of the central nervous system) arise predominantly in the posterior aspect of the spinal cord and are often associated with an intraspinal cyst. Rarely, the tumor develops in the anterior aspect of the spinal cord. Ventral spinal hemangioblastomas are a surgical challenge because of difficult access and because vessels feeding the tumor originate from the anterior spinal artery.

The goal of this study was to clarify whether an anterior or posterior surgical approach is better for management of hemangioblastomas of the ventral spinal cord.

Methods. The authors performed a retrospective analysis of clinical outcomes and findings on magnetic resonance (MR) imaging studies in eight patients (two women and six men with a mean age of 34 ± 15 years) who underwent resection of ventral spinal hemangioblastomas (nine tumors: five cervical and four thoracic). Two surgical approaches were used to resect these tumors. A posterior approach was selected to treat five patients (laminectomy and posterior myelotomy in four patients and the posterolateral approach in one patient); an anterior approach (corpectomy and arthrodesis) was selected to treat the remaining three patients.

Immediately after surgery, the ability to ambulate remained unchanged in patients in whom an anterior approach had been performed, but deteriorated significantly in patients in whom a posterior approach had been used, because of motor weakness (four of five patients) and/or proprioceptive sensory loss (three of five patients). This difference in ambulation, despite significant improvements over time among patients in the posterior access group, remained significant 6 months after surgery. In all cases, MR images revealed complete resection of the tumor and in five patients significant or complete resolution of the intramedullary cyst was demonstrated (present in six of eight patients).

Conclusions. The outcomes of these eight patients with hemangioblastomas of the ventral spinal cord indicate that both immediate and long-term results are better when an anterior approach is selected for resection.