Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ryo Fujita x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Yuichiro Hisada, Tsutomu Endo, Yoshinao Koike, Masahiro Kanayama, Ryota Suzuki, Ryo Fujita, Katsuhisa Yamada, Akira Iwata, Hiroyuki Hasebe, Hideki Sudo, Norimasa Iwasaki, and Masahiko Takahata

OBJECTIVE

Data regarding risk factors for the progression of ossification of the posterior longitudinal ligament (OPLL) in the thoracic spine are scarce. Therefore, in this study, the authors aimed to elucidate the difference in the radiographic progression pattern of OPLL and its risk factors between cervical and thoracic OPLL using longitudinally acquired whole-spine CT scans.

METHODS

Overall, 123 patients with symptomatic OPLL who underwent repeated whole-spine CT examinations, with an average interval of 49 months (at least 3 years) between scans, were retrospectively reviewed. Progression of OPLL was assessed to compare the distribution of OPLL over the entire spine on the initial and final CT scans. Patients were divided into a cervical OPLL (C-OPLL) group and a thoracic OPLL (T-OPLL) group according to the location of the main lesion. The progression pattern of OPLL and its risk factors were compared between the two groups using the Student t-test or Mann-Whitney U-test.

RESULTS

In the C-OPLL group, 15 (22.1%) of 68 patients had OPLL progression, of whom 12 patients (80.0%) had progression only in the cervical spine and 3 patients (20.0%) had progression in multiple regions (cervical and thoracic/lumbar). In the T-OPLL group, 16 (29.1%) of 55 patients had OPLL progression, of which 3 patients (18.8%) had progression only in the thoracic spine and 8 patients (50.0%) had progression in multiple regions. Young age was a common risk factor for OPLL progression regardless of the location of OPLL, and this trend was more pronounced in the T-OPLL group than in the C-OPLL group. High BMI, male sex, and multilevel, severe T-OPLL were identified as independent risk factors for progression of T-OPLL (OR 1.19, 95% CI 1.03–1.37; OR 10.5, 95% CI 1.39–81.94; and OR 1.24, 95% CI 1.16–1.45, respectively).

CONCLUSIONS

Patients with T-OPLL are predisposed to diffuse progression of OPLL over the entire spine, whereas patients with C-OPLL are likely to have progression in only the cervical spine. Young age and high BMI are significant risk factors for OPLL progression, especially in patients with T-OPLL. Our study highlights the need for continued follow-up in patients with T-OPLL, especially in young patients and those with obesity, for early detection of spinal cord and cauda equina symptoms due to the progression of OPLL throughout the spine.

Free access

Yoshifumi Kudo, Ichiro Okano, Tomoaki Toyone, Akira Matsuoka, Hiroshi Maruyama, Ryo Yamamura, Koji Ishikawa, Chikara Hayakawa, Soji Tani, Masaya Sekimizu, Yushi Hoshino, Tomoyuki Ozawa, Toshiyuki Shirahata, Masayori Fujita, Yusuke Oshita, Haruka Emori, Hiroaki Omata, and Katsunori Inagaki

OBJECTIVE

The purpose of this study was to compare the clinical results of revision interbody fusion surgery between lateral lumbar interbody fusion (LLIF) and posterior lumbar interbody fusion (PLIF) or transforaminal lumbar interbody fusion (TLIF) with propensity score (PS) adjustments and to investigate the efficacy of indirect decompression with LLIF in previously decompressed segments on the basis of radiological assessment.

METHODS

A retrospective study of patients who underwent revision surgery for recurrence of neurological symptoms after posterior decompression surgery was performed. Postoperative complications and operative factors were evaluated and compared between LLIF and PLIF/TLIF. Moreover, postoperative improvement in cross-sectional areas (CSAs) in the spinal canal and intervertebral foramen was evaluated in LLIF cases.

RESULTS

A total of 56 patients (21 and 35 cases of LLIF and PLIF/TLIF, respectively) were included. In the univariate analysis, the LLIF group had significantly more endplate injuries (p = 0.03) and neurological deficits (p = 0.042), whereas the PLIF/TLIF group demonstrated significantly more dural tears (p < 0.001), surgical site infections (SSIs) (p = 0.02), and estimated blood loss (EBL) (p < 0.001). After PS adjustments, the LLIF group still showed significantly more endplate injuries (p = 0.03), and the PLIF/TLIF group demonstrated significantly more dural tears (p < 0.001), EBL (p < 0.001), and operating time (p = 0.04). The PLIF/TLIF group showed a trend toward a higher incidence of SSI (p = 0.10). There was no statistically significant difference regarding improvement in the Japanese Orthopaedic Association scores between the 2 surgical procedures (p = 0.77). The CSAs in the spinal canal and foramen were both significantly improved (p < 0.001).

CONCLUSIONS

LLIF is a safe, effective, and less invasive procedure with acceptable complication rates for revision surgery for previously decompressed segments. Therefore, LLIF can be an alternative to PLIF/TLIF for restenosis after posterior decompression surgery.