Search Results

You are looking at 1 - 10 of 106 items for

  • Author or Editor: Russell R. Lonser x
Clear All Modify Search
Free access

Russell R. Lonser

Restricted access

Steven M. Sorscher

Restricted access

Satoru Shimizu

Restricted access

Russell R. Lonser, Ronald R. Buggage and Robert J. Weil

Restricted access

Marc R. Mayberg

Free access

Russell R. Lonser, Lynnette Nieman and Edward H. Oldfield

Cushing's disease (CD) is the result of excess secretion of adrenocorticotropic hormone (ACTH) by a benign monoclonal pituitary adenoma. The excessive secretion of ACTH stimulates secretion of cortisol by the adrenal glands, resulting in supraphysiological levels of circulating cortisol. The pathophysiological levels of cortisol are associated with hypertension, diabetes, obesity, and early death. Successful resection of the CD-associated ACTH-secreting pituitary adenoma is the treatment of choice and results in immediate biochemical remission with preservation of pituitary function. Accurate and early identification of CD is critical for effective surgical management and optimal prognosis. The authors review the current pathophysiological principles, diagnostic methods, and management of CD.

Restricted access

Gautam U. Mehta, Russell R. Lonser and Edward H. Oldfield

Although he never performed a pituitary operation for the disease, Harvey Cushing was the first to describe and treat patients with Cushing disease (CD). Other surgeons at the time were reluctant to operate on the pituitary due to the normal sella on skull radiographs in CD and the unclear etiology of the disorder. To better define and understand factors influencing the history of pituitary surgery for CD, the authors analyzed historical texts related to CD biology, diagnosis, and treatment. Cushing's monograph on basophilic pituitary adenomas and cortisol excess appeared in 1932. One year later in 1933, Alfred Pattison performed the first successful pituitary operation for CD by implanting radon seeds in the sella. Resection of a pituitary adenoma for CD was attempted 1 month later in 1933 by Howard Naffziger, resulting in only transient improvement that corresponded to the lack of tumor in the resected tissue. Soon thereafter, Susman in 1935 and Costello in 1936 described pituitary basophilic adenomas at autopsy in patients without premorbid endocrinopathy. They concluded that the adrenal gland was the cause of CD, which resulted in a 3-decade abandonment of pituitary surgery for CD. Jules Hardy in 1963 used the operating microscope to perform the first selective removal of an adrenocorticotropic hormone (ACTH)–secreting microadenoma, which established a pituitary cause and defined the modern treatment of CD. Subsequent reports by Hardy, Laws, and Wilson resulted in widespread acceptance of pituitary surgery for CD. Initial reluctance to operate on the pituitary for CD was multifaceted and included general uncertainty surrounding the etiology of Cushing syndrome as well as a lack of early surgical success, both due to the small size of ACTH-secreting adenomas. Selective removal of ACTH-secreting adenomas identified the source of CD and ended the delay in acceptance of pituitary surgery for CD.

Restricted access

Russell R. Lonser, John D. Heiss and Edward H. Oldfield

✓ Preoperative reduction in tumor vascularity has been accomplished previously by selective catheterization of tumor vessels and delivery of occlusive materials. The results of percutaneous infusion of vertebral hemangiomas and other vascular lesions led the authors to speculate that rapid devascularization of tumors by direct injection of ethanol (ETOH) could be used to reduce bleeding and facilitate resection during surgery. Thus, the use of intratumoral injection of ETOH and its effects on tumor hemostasis and resectability were examined. Four patients received direct injection of ETOH into either a spinal epidural (two renal cell carcinomas and one rhabdomyosarcoma) or a large cerebellar neoplasm (hemangioblastoma). Intraoperative perfusion of the tumors with ETOH produced immediate blanching and devascularization and enhanced visualization and resection.

Incremental tumor devascularization is achieved by careful injection of small amounts of ETOH directly into the lesion, producing immediate and complete regional tumor devascularization. Use of this technique reduces intratumoral bleeding and enhances the ease and effectiveness of resection.

Full access

Prashant Chittiboina, John D. Heiss and Russell R. Lonser

An intraoperative MRI (iMRI)–compatible system has been developed for direct placement of convection-enhanced delivery (CED) cannulae using real-time imaging. To establish the precision and feasibility of this technology, the authors analyzed findings in patients who underwent direct iMRI CED cannula placement.

Three consecutive patients underwent iMRI-guided placement of CED infusion cannulae (6 cannulae) for treatment of diffuse intrinsic brainstem glioma (2 patients) or Parkinson's disease (1 patient). Convective infusion cannulae were guided to the target using the ClearPoint iMRI-based navigation platform (MRI Interventions, Inc.). Placement accuracy was analyzed.

Real-time iMRI during infusion cannula insertion allowed for monitoring of trajectory accuracy during placement. During cannula insertion, no reinsertions or changes due to errors in targeting were necessary. The mean radial error was 1.0 ± 0.5 mm (± SD). There was no correlation between the total length of the planned trajectory and the radial error (Pearson's coefficient: −0.40; p = 0.5). The mean anteroposterior and lateral errors were 0.9 ± 0.5 and 0.3 ± 0.2 mm, respectively. The mean in-plane distance error was 1.0 ± 0.4 mm. The mean tip error (scalar distance between the planned target and actual tip) was 1.9 ± 0.9 mm. There was no correlation between the length of the planned trajectory and any of the measured errors. No complications were associated with cannula placement.

Real-time iMRI-based targeting and monitoring of infusion cannula placement is a safe, effective, and accurate technique that should enable more selective perfusion of brain regions.