Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Rowena Thomson x
Clear All Modify Search
Restricted access

Evan D. Bander, Alexander D. Ramos, Eva Wembacher-Schroeder, Iryna Ivasyk, Rowena Thomson, Peter F. Morgenstern and Mark M. Souweidane

OBJECTIVE

While the safety and efficacy of convection-enhanced delivery (CED) have been studied in patients receiving single-dose drug infusions, agents for oncological therapy may require repeated or chronic infusions to maintain therapeutic drug concentrations. Repeat and chronic CED infusions have rarely been described for oncological purposes. Currently available CED devices are not approved for extended indwelling use, and the only potential at this time is for sequential treatments through multiple procedures. The authors report on the safety and experience in a group of pediatric patients who received sequential CED into the brainstem for the treatment of diffuse intrinsic pontine glioma.

METHODS

Patients in this study were enrolled in a phase I single-center clinical trial using 124I-8H9 monoclonal antibody (124I-omburtamab) administered by CED (clinicaltrials.gov identifier NCT01502917). A retrospective chart and imaging review were used to assess demographic data, CED infusion data, and postoperative neurological and surgical outcomes. MRI scans were analyzed using iPlan Flow software for volumetric measurements. Target and catheter coordinates as well as radial, depth, and absolute error in MRI space were calculated with the ClearPoint imaging software.

RESULTS

Seven patients underwent 2 or more sequential CED infusions. No patients experienced Clinical Terminology Criteria for Adverse Events grade 3 or greater deficits. One patient had a persistent grade 2 cranial nerve deficit after a second infusion. No patient experienced hemorrhage or stroke postoperatively. There was a statistically significant decrease in radial error (p = 0.005) and absolute tip error (p = 0.008) for the second infusion compared with the initial infusion. Sequential infusions did not result in significantly different distribution capacities between the first and second infusions (volume of distribution determined by the PET signal/volume of infusion ratio [mean ± SD]: 2.66 ± 0.35 vs 2.42 ± 0.75; p = 0.45).

CONCLUSIONS

This series demonstrates the ability to safely perform sequential CED infusions into the pediatric brainstem. Past treatments did not negatively influence the procedural workflow, technical application of the targeting interface, or distribution capacity. This limited experience provides a foundation for using repeat CED for oncological purposes.

Free access

Evan D. Bander, Karima Tizi, Eva Wembacher-Schroeder, Rowena Thomson, Maria Donzelli, Elizabeth Vasconcellos and Mark M. Souweidane

OBJECTIVE

In the brainstem, there are concerns regarding volumetric alterations following convection-enhanced delivery (CED). The relationship between distribution volume and infusion volume is predictably greater than one. Whether this translates into deformational changes and influences clinical management is unknown. As part of a trial using CED for diffuse intrinsic pontine glioma (DIPG), the authors measured treatment-related volumetric alterations in the brainstem and ventricles.

METHODS

Enrolled patients underwent a single infusion of radioimmunotherapy. Between 2012 and 2019, 23 patients with volumetric pre- and postoperative day 1 (POD1) and day 30 (POD30) MRI scans were analyzed using iPlan® Flow software for semiautomated volumetric measurements of the ventricles and pontine segment of the brainstem.

RESULTS

Children in the study had a mean age of 7.7 years (range 2–18 years). The mean infusion volume was 3.9 ± 1.7 ml (range 0.8–8.8 ml). Paired t-tests demonstrated a significant increase in pontine volume immediately following infusion (p < 0.0001), which trended back toward baseline by POD30 (p = 0.046; preoperative 27.6 ± 8.4 ml, POD1 30.2 ± 9.0 ml, POD30 29.5 ± 9.4 ml). Lateral ventricle volume increased (p = 0.02) and remained elevated on POD30 (p = 0.04; preoperative 23.5 ± 15.4 ml, POD1 26.3 ± 16.0, POD30 28.6 ± 21.2). Infusion volume had a weak, positive correlation with pontine and lateral ventricle volume change (r2 = 0.22 and 0.27, respectively). Four of the 23 patients had an increase in preoperative neurological deficits at POD30. No patients required shunt placement within 90 days.

CONCLUSIONS

CED infusion into the brainstem correlates with immediate but self-limited deformation changes in the pons. The persistence of increased ventricular volume and no need for CSF diversion post-CED are inconsistent with obstructive hydrocephalus. Defining the degree and time course of these deformational changes can assist in the interpretation of neuroimaging along the DIPG disease continuum when CED is incorporated into the treatment algorithm.