Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Ronald A. Lehman x
  • Refine by Access: all x
Clear All Modify Search
Full access

James D. Lin, Chao Wei, Jamal N. Shillingford, Eduardo C. Beauchamp, Lee A. Tan, Yongjung J. Kim, Ronald A. Lehman Jr., and Lawrence G. Lenke

OBJECTIVE

To demonstrate that a more ventral starting point for thoracic pedicle screw insertion, produced by aggressively removing the dorsal transverse process bone down to the superior articular facet (SAF), results in a larger margin for error and more medial screw angulation compared to the traditional dorsal starting point (DSP). The margin for error will be quantified by the maximal insertional arc (MIA).

METHODS

The study population included 10 consecutive operative patients with adult idiopathic scoliosis who underwent primary surgery. All measurements were performed using 3D visualization software by an attending spine surgeon. The screw starting points were 2 mm lateral to the midline of the SAF in the mediolateral direction and in the center of the pedicle in the cephalocaudal direction. The DSP was on the dorsal cortex. The ventral starting point (VSP) was at the depth of the SAF. Measurements included distance to the pedicle isthmus, MIA, and screw trajectories.

RESULTS

Ten patients and 110 vertebral levels (T1–11) were measured. The patients’ average age was 41.4 years (range 18–64 years). The pedicle isthmus was largest at T1 (4.04 ± 1.09 mm), and smallest at T5 (1.05 ± 0.93 mm). The distance to the pedicle isthmus was 7.47 mm for the VSP and 11.92 mm for the DSP (p < 0.001). The MIA was 15.3° for the VSP and 10.1° for the DSP (p < 0.001). Screw angulation was 21.7° for the VSP and 16.8° for the DSP (p < 0.001).

CONCLUSIONS

A more ventral starting point for thoracic pedicle screws results in increased MIA and more medial screw angulation. The increased MIA represents an increased tolerance for error that should improve the safety of pedicle screw placement. More medial screw angulation allows improved triangulation of pedicle screws.

Full access

Melvin D. Helgeson, Ronald A. Lehman Jr., Anton E. Dmitriev, Daniel G. Kang, Rick C. Sasso, Chadi Tannoury, and K. Daniel Riew

Object

Intraoperative imaging often does not provide adequate visualization to ensure safe placement of screws. Therefore, the authors investigated the accuracy of a freehand technique for placement of pars, pedicle, and intralaminar screws in C-2.

Methods

Sixteen cadaveric specimens were instrumented freehand by 2 experienced cervical spine surgeons with either a pars or pedicle screw, and bilateral intralaminar screws. The technique was based on anatomical starting points and published screw trajectories. A pedicle finder was used to establish the trajectory, followed by tapping, palpation, and screw placement. After placement of all screws (16 pars screws, 16 pedicle screws, and 32 intralaminar screws), the C-2 segments were disarticulated, radiographed in anteroposterior, lateral, and axial planes, and meticulously inspected by another spine surgeon to determine the nature and presence of any defects.

Results

A total of 64 screws were evaluated in this study. Pars screws exhibited 2 critical defects (1 in the foramen transversarium and 1 in the C2–3 facet) and an insignificant dorsal cortex breech, for an overall accuracy rate of 81.3%. Pedicle screws demonstrated only 1 insignificant violation (inferior facet/medial cortex intrusion of 1 mm) with an accuracy rate of 93.8%, and intralaminar screws demonstrated 3 insignificant violations (2 in the ventral canal, 1 in the caudad lamina breech) for an accuracy rate of 90.6%. Pars screws had significantly more critical violations than intralaminar screws (p = 0.041).

Conclusions

Instrumentation of the C-2 vertebrae using the freehand technique for insertion of pedicle and intralaminar screws showed a high success rate with no critical violations. Pars screw insertion was not as reliable, with 2 critical violations from a total of 16 placements. The freehand technique appears to be a safe and reliable method for insertion of C-2 pedicle and intralaminar screws.

Free access

Griffin R. Baum, Alex S. Ha, Meghan Cerpa, Scott L. Zuckerman, James D. Lin, Richard P. Menger, Joseph A. Osorio, Simon Morr, Eric Leung, Ronald A. Lehman Jr., Zeeshan Sardar, and Lawrence G. Lenke

OBJECTIVE

The goal of this study was to validate the Global Alignment and Proportion (GAP) score in a cohort of patients undergoing adult spinal deformity (ASD) surgery. The GAP score is a novel measure that uses sagittal parameters relative to each patient’s lumbosacral anatomy to predict mechanical complications after ASD surgery. External validation is required.

METHODS

Adult ASD patients undergoing > 4 levels of posterior fusion with a minimum 2-year follow-up were included. Six-week postoperative standing radiographs were used to calculate the GAP score, classified into a spinopelvic state as proportioned (P), moderately disproportioned (MD), or severely disproportioned (SD). A chi-square analysis, receiver operating characteristic curve, and Cochran-Armitage analysis were performed to assess the relationship between the GAP score and mechanical complications.

RESULTS

Sixty-seven patients with a mean age of 52.5 years (range 18–75 years) and a mean follow-up of 2.04 years were included. Patients with < 2 years of follow-up were included only if they had an early mechanical complication. Twenty of 67 patients (29.8%) had a mechanical complication. The spinopelvic state breakdown was as follows: P group, 21/67 (31.3%); MD group, 23/67 (34.3%); and SD group, 23/67 (34.3%). Mechanical complication rates were not significantly different among all groups: P group, 19.0%; MD group, 30.3%; and SD group, 39.1% (χ2 = 1.70, p = 0.19). The rates of mechanical complications between the MD and SD groups (30.4% and 39.1%) were less than those observed in the original GAP study (MD group 36.4%–57.1% and SD group 72.7%–100%). Within the P group, the rates in this study were higher than in the original study (19.0% vs 4.0%, respectively).

CONCLUSIONS

The authors found no statistically significant difference in the rate of mechanical complications between the P, MD, and SD groups. The current validation study revealed poor generalizability toward the authors’ patient population.

Restricted access

Scott L. Zuckerman, Christopher S. Lai, Yong Shen, Nathan J. Lee, Mena G. Kerolus, Alex S. Ha, Ian A. Buchanan, Eric Leung, Meghan Cerpa, Ronald A. Lehman, and Lawrence G. Lenke

OBJECTIVE

The authors’ objectives were: 1) to evaluate the incidence and risk factors of iatrogenic coronal malalignment (CM), and 2) to assess the outcomes of patients with all three types of postoperative CM (iatrogenic vs unchanged/worsened vs improved but persistent).

METHODS

A single-institution, retrospective cohort study was performed on adult spinal deformity (ASD) patients who underwent > 6-level fusion from 2015 to 2019. Iatrogenic CM was defined as immediate postoperative C7 coronal vertical axis (CVA) ≥ 3 cm in patients with preoperative CVA < 3 cm. Additional subcategories of postoperative CM were unchanged/worsened CM, which was defined as immediate postoperative CVA within 0.5 cm of or worse than preoperative CVA, and improved but persistent CM, which was defined as immediate postoperative CVA that was at least 0.5 cm better than preoperative CVA but still ≥ 3 cm; both groups included only patients with preoperative CM. Immediate postoperative radiographs were obtained when the patient was discharged from the hospital after surgery. Demographic, radiographic, and operative variables were collected. Outcomes included major complications, readmissions, reoperations, and patient-reported outcomes (PROs). The t-test, Kruskal-Wallis test, and univariate logistic regression were performed for statistical analysis.

RESULTS

In this study, 243 patients were included, and the mean ± SD age was 49.3 ± 18.3 years and the mean number of instrumented levels was 13.5 ± 3.9. The mean preoperative CVA was 2.9 ± 2.7 cm. Of 153/243 patients without preoperative CM (CVA < 3 cm), 13/153 (8.5%) had postoperative iatrogenic CM. In total, 43/243 patients (17.7%) had postoperative CM: iatrogenic CM (13/43 [30.2%]), unchanged/worsened CM (19/43 [44.2%]), and improved but persistent CM (11/43 [25.6%]). Significant risk factors associated with iatrogenic CM were anxiety/depression (OR 3.54, p = 0.04), greater preoperative sagittal vertical axis (SVA) (OR 1.13, p = 0.007), greater preoperative pelvic obliquity (OR 1.41, p = 0.019), lumbosacral fractional (LSF) curve concavity to the same side of the CVA (OR 11.67, p = 0.020), maximum Cobb concavity opposite the CVA (OR 3.85, p = 0.048), and three-column osteotomy (OR 4.34, p = 0.028). In total, 12/13 (92%) iatrogenic CM patients had an LSF curve concavity to the same side as the CVA. Among iatrogenic CM patients, mean pelvic obliquity was 3.1°, 4 (31%) patients had pelvic obliquity > 3°, mean preoperative absolute SVA was 8.0 cm, and 7 (54%) patients had preoperative sagittal malalignment. Patients with iatrogenic CM were more likely to sustain a major complication during the 2-year postoperative period than patients without iatrogenic CM (12% vs 33%, p = 0.046), yet readmission, reoperation, and PROs were similar.

CONCLUSIONS

Postoperative iatrogenic CM occurred in 9% of ASD patients with preoperative normal coronal alignment (CVA < 3 cm). ASD patients who were most at risk for iatrogenic CM included those with preoperative sagittal malalignment, increased pelvic obliquity, LSF curve concavity to the same side as the CVA, and maximum Cobb angle concavity opposite the CVA, as well as those who underwent a three-column osteotomy. Despite sustaining more major complications, iatrogenic CM patients did not have increased risk of readmission, reoperation, or worse PROs.

Full access

James D. Lin, Lee A. Tan, Chao Wei, Jamal N. Shillingford, Joseph L. Laratta, Joseph M. Lombardi, Yongjung J. Kim, Ronald A. Lehman Jr., and Lawrence G. Lenke

OBJECTIVE

The S2-alar-iliac (S2AI) screw is an increasingly popular method for spinopelvic fixation. The technique of freehand S2AI screw placement has been recently described. The purpose of this study was to demonstrate, through a CT imaging study of patients with spinal deformity, that screw trajectories based on the posterior superior iliac spine (PSIS) and sacral laminar slope result in reliable freehand S2AI trajectories that traverse safely above the sciatic notch.

METHODS

Fifty consecutive patients (age ≥ 18 years) who underwent primary spinal deformity surgery were included in the study. Simulated S2AI screw trajectories were analyzed with 3D visualization software. The cephalocaudal coordinate for the starting point was 15 mm cephalad to the PSIS. The mediolateral coordinate for the starting point was in line with the lateral border of the dorsal foramina. The cephalocaudal screw trajectory was perpendicular to the sacral laminar slope. Screw trajectories, lengths, and distance above the sciatic notch were measured.

RESULTS

The mean sagittal screw angle (cephalocaudal angulation) was 44.0° ± 8.4° and the mean transverse angle (mediolateral angulation) was 37.3° ± 4.3°. The mean starting point was 5.9 ± 5.8 mm distal to the caudal border of the S1 foramen. The mean screw length was 99.9 ± 18.6 mm. Screw trajectories were on average 8.5 ± 4.3 mm above the sciatic notch. A total of 97 of 100 screws were placed above the sciatic notch. In patients with transitional lumbosacral anatomy, the starting point on the lumbarized/sacralized side was 3.4 mm higher than on the contralateral unaffected side.

CONCLUSIONS

The PSIS and sacral laminar slope are two important anatomical landmarks for freehand S2AI screw placement.

Free access

Mohamad Bydon, Vance Fredrickson, Rafael De la Garza-Ramos, Yiping Li, Ronald A. Lehman Jr., Gregory R. Trost, and Ziya L. Gokaslan

Sacral fractures are uncommon lesions and most often the result of high-energy trauma. Depending on the fracture location, neurological injury may be present in over 50% of cases. In this article, the authors conducted a comprehensive literature review on the epidemiology of sacral fractures, relevant anatomy of the sacral and pelvic region, common sacral injuries and fractures, classification systems of sacral fractures, and current management strategies. Due to the complex nature of these injuries, surgical management remains a challenge for the attending surgeon. Few large-scale studies have addressed postoperative complications or long-term results, but current evidence suggests that although fusion rates are high, long-term morbidity, such as residual pain and neurological deficits, persists for many patients.

Restricted access

Alex S. Ha, Meghan Cerpa, Justin Mathew, Paul Park, Joseph M. Lombardi, Andrew J. Luzzi, Nathan J. Lee, Marc D. Dyrszka, Zeeshan M. Sardar, Ronald A. Lehman Jr., and Lawrence G. Lenke

OBJECTIVE

Lumbosacral fractional curves in adult spinal deformity (ASD) patients often have sharp coronal curves resulting in significant pain and imbalance. Postoperative stretch neuropraxia after fractional curve correction can lead to discomfort and unsatisfactory outcomes. The goal of this study was to use radiographic measures to increase understanding of the relationship between postoperative stretch neuropraxia and fractional curve correction.

METHODS

In 62 ASD patients treated from 2015 to 2018, radiographic review was performed, including measurement of the distance between the lower lumbar neural foramen (L4 and L5) in the concavity and convexity of the lumbosacral fractional curve and the ipsilateral femoral heads (FHs; L4–FH and L5–FH) in pre- and postoperative anteroposterior spine radiographs. The largest absolute preoperative to postoperative change in distance between the lower lumbar neural foramen and the ipsilateral FH (ΔL4/L5–FH) was used for analysis. Chi-square analyses, independent and paired t-tests, and logistic regression were performed to study the relationship between L4/L5–FH and stretch neuropraxia for categorical and continuous variables, respectively.

RESULTS

Of the 62 patients, 13 (21.0%) had postoperative stretch neuropraxia. Patients without postoperative stretch neuropraxia had an average ΔL4–FH distance of 16.2 mm compared to patients with stretch neuropraxia, who had an average ΔL4–FH distance of 31.5 mm (p < 0.01). Patients without postoperative neuropraxia had an average ΔL5–FH distance of 11.1 mm compared to those with stretch neuropraxia, who had an average ΔL5–FH distance of 23.0 mm (p < 0.01). Chi-square analysis showed that patients had a 4.78-fold risk of developing stretch neuropraxia with ΔL4–FH > 20 mm (95% CI 1.3–17.3) and a 5.17-fold risk of developing stretch neuropraxia with ΔL5–FH > 15 mm (95% CI 1.4–18.7). Logistic regression analysis indicated that the odds of developing stretch neuropraxia were 15:1 with a ΔL4–FH > 20 mm (95% CI 3–78) and 21:1 with a ΔL5–FH > 15 mm (95% CI 4–113).

CONCLUSIONS

The novel ΔL4/L5–FH distances are strongly associated with postoperative stretch neuropraxia in ASD patients. A ΔL4–FH > 20 mm and ΔL5–FH > 15 mm significantly increase the odds for patients to develop postoperative stretch neuropraxia.

Restricted access

Mario J. Cardoso, Anton E. Dmitriev, Melvin D. Helgeson, Frederick Stephens, Victoria Campbell, Ronald A. Lehman, Patrick Cooper, and Michael K. Rosner

Object

Transpedicular instrumentation at C-7 has been well accepted, but salvage techniques are limited. Lamina screws have been shown to be a biomechanically sound salvage technique in the proximal thoracic spine, but have not been evaluated in the lower cervical spine. The following study evaluates the anatomical feasibility of lamina screws at C-7 as well as their bone-screw interface strength as a salvage technique.

Methods

Nine fresh-frozen C-7 cadaveric specimens were scanned for bone mineral density using dual energy x-ray absorptiometry. Prior to testing, all specimens were imaged using CT to obtain 1-mm axial sections. Caliper measurements of both pedicle width and laminar thickness were obtained. On the right side, pedicle screws were first inserted and then pulled out. Salvage intralaminar screws were inserted into the left lamina from the right spinous process/lamina junction and then pulled out. All screws were placed by experienced cervical spine surgeons under direct fluoroscopic visualization. Pedicle and lamina screws were 4.35- and 3.5-mm in diameter, respectively. Screws sizes were chosen based on direct and radiographic measurements of the respective anatomical regions. Insertional torque (IT) was measured in pounds per inch. Tensile loading to failure was performed in-line with the screw axis at a rate of 0.25 mm/sec using a MiniBionix II system with data recorded in Newtons.

Results

Using lamina screws as a salvage technique generated mean pullout forces (778.9 ± 161.4 N) similar to that of the index pedicle screws (805.3 ± 261.7 N; p = 0.796). However, mean lamina screw peak IT (5.2 ± 2.0 lbs/in) was significantly lower than mean index pedicle screw peak IT (9.1 ± 3.6 lbs/in; p = 0.012). Bone mineral density was strongly correlated with pedicle screw pullout strength (r = 0.95) but less with lamina screw pullout strength (r = 0.04). The mean lamina width measured using calipers (5.7 ± 1.0 mm) was significantly different from the CTmeasured mean lamina width (5.1 ± 0.8 mm; p = 0.003). Similarly, the mean pedicle width recorded with calipers (6.6 ± 1.1 mm) was significantly different from the CT-measured mean pedicle width (6.2 ± 1.3 mm; p = 0.014). The mean laminar width measured on CT at the thinnest point ranged from 3.8 to 6.8 mm, allowing a 3.5-mm screw to be placed without difficulty.

Conclusions

These results suggest that using lamina screws as a salvage technique at C-7 provides similar fixation strength as the index pedicle screw. The C-7 lamina appears to have an ideal anatomical width for the insertion of 3.5-mm screws commonly used for cervical fusions. Therefore, if the transpedicular screw fails, using intralaminar screws appear to be a biomechanically sound salvage technique.