Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Roman O. Kowalchuk x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Independent predictors of vertebral compression fracture following radiation for metastatic spine disease

Presented at the 2022 AANS/CNS Joint Section on Disorders of the Spine and Peripheral Nerves

Anthony L. Mikula, Zach Pennington, Nikita Lakomkin, Michelle J. Clarke, Peter S. Rose, Mohamad Bydon, Brett Freedman, Arjun S. Sebastian, Lichun Lu, Roman O. Kowalchuk, Kenneth W. Merrell, Jeremy L. Fogelson, and Benjamin D. Elder

OBJECTIVE

The goal of this study was to determine independent risk factors for vertebral compression fracture (VCF) following radiation for metastatic spine disease, including low bone mineral density as estimated by Hounsfield units (HU).

METHODS

A retrospective chart review identified patients with a single vertebral column metastasis treated with radiation therapy, a pretreatment CT scan, and a follow-up CT scan at least 6 weeks after treatment. Patients with primary spine tumors, preradiation vertebroplasty, preradiation spine surgery, prior radiation to the treatment field, and proton beam treatment modality were excluded. The HU were measured in the vertebral bodies at the level superior to the metastasis, within the tumor and medullary bone of the metastatic level, and at the level inferior to the metastasis. Variables collected included basic demographics, Spine Instability Neoplastic Score (SINS), presenting symptoms, bone density treatment, primary tumor pathology, Weinstein-Boriani-Biagini (WBB) classification, Enneking stage, radiation treatment details, chemotherapy regimen, and prophylactic vertebroplasty.

RESULTS

One hundred patients with an average age of 63 years and average follow-up of 18 months with radiation treatment dates ranging from 2017 to 2020 were included. Fifty-nine patients were treated with external-beam radiation therapy, with a median total dose of 20 Gy (range 8–40 Gy). Forty-one patients were treated with stereotactic body radiation therapy, with a median total dose of 24 Gy (range 18–39 Gy). The most common primary pathologies included lung (n = 22), prostate (n = 21), and breast (n = 14). Multivariable logistic regression analysis (area under the curve 0.89) demonstrated pretreatment HU (p < 0.01), SINS (p = 0.02), involvement of ≥ 3 WBB sectors (p < 0.01), primary pathology other than prostate (p = 0.04), and ongoing chemotherapy treatment (p = 0.04) to be independent predictors of postradiation VCF. Patients with pretreatment HU < 145 (n = 32), 145–220 (n = 31), and > 220 (n = 37) had a fracture rate of 59%, 39%, and 11%, respectively. An HU cutoff of 157 was found to maximize sensitivity (71%) and specificity (75%) in predicting postradiation VCF.

CONCLUSIONS

Low preradiation HU, higher SINS, involvement of ≥ 3 WBB sectors, ongoing chemotherapy, and nonprostate primary pathology were independent predictors of postradiation VCF in patients with metastatic spine disease. Low bone mineral density, as estimated by HU, is a novel and potentially modifiable risk factor for VCF.

Free access

Roman O. Kowalchuk, Michael R. Waters, K. Martin Richardson, Kelly Spencer, James M. Larner, William H. McAllister, Jason P. Sheehan, and Charles R. Kersh

OBJECTIVE

This study evaluated a large cohort of patients treated with stereotactic body radiation therapy for spinal metastases and investigated predictive factors for local control, local progression-free survival (LPFS), overall survival, and pain response between the different spinal regions.

METHODS

The study was undertaken via retrospective review at a single institution. Patients with a tumor metastatic to the spine were included, while patients with benign tumors or primary spinal cord cancers were excluded. Statistical analysis involved univariate analysis, Cox proportional hazards analysis, the Kaplan-Meier method, and machine learning techniques (decision-tree analysis).

RESULTS

A total of 165 patients with 190 distinct lesions met all inclusion criteria for the study. Lesions were distributed throughout the cervical (19%), thoracic (43%), lumbar (19%), and sacral (18%) spines. The most common treatment regimen was 24 Gy in 3 fractions (44%). Via the Kaplan-Meier method, the 24-month local control was 80%. Sacral spine lesions demonstrated decreased local control (p = 0.01) and LPFS (p < 0.005) compared with those of the thoracolumbar spine. The cervical spine cases had improved local control (p < 0.005) and LPFS (p < 0.005) compared with the sacral spine and trended toward improvement relative to the thoracolumbar spine. The 36-month local control rates for cervical, thoracolumbar, and sacral tumors were 86%, 73%, and 44%, respectively. Comparably, the 36-month LPFS rates for cervical, thoracolumbar, and sacral tumors were 85%, 67%, and 35%, respectively. A planning target volume (PTV) > 50 cm3 was also predictive of local failure (p = 0.04). Fewer cervical spine cases had disease with PTV > 50 cm3 than the thoracolumbar (p = 5.87 × 10−8) and sacral (p = 3.9 × 10−3) cases. Using decision-tree analysis, the highest-fidelity models for predicting pain-free status and local failure demonstrated the first splits as being cervical and sacral location, respectively.

CONCLUSIONS

This study presents a novel risk stratification for local failure and LPFS by spinal region. Patients with metastases to the sacral spine may have decreased local control due to increased PTV, especially with a PTV of > 50 cm3. Multidisciplinary care should be emphasized in these patients, and both surgical intervention and radiotherapy should be strongly considered.