Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Roger S. Noss x
Clear All Modify Search
Restricted access

Tene A. Cage, Neil G. Simon, Suzanne Bourque, Roger Noss, John W. Engstrom, Jeffrey W. Ralph and Michel Kliot

Traumatic peripheral nerve injury can lead to significant long-term disability for previously healthy persons. Damaged nerve trunks have been traditionally repaired using cable grafts, but nerve transfer or neurotization procedures have become increasingly popular because the axonal regrowth distances are much shorter. These techniques sacrifice the existing nerve pathway, so muscle reinnervation depends entirely on the success of the repair. Providing a supplemental source of axons from an adjacent intact nerve by using side-to-side anastomosis might reinnervate the target muscle without compromising the function of the donor nerve.

The authors report a case of biceps muscle reinnervation after side-to-side anastomosis of an intact median nerve to a damaged musculocutaneous nerve. The patient was a 34-year-old man who had sustained traumatic injury primarily to the right upper and middle trunks of the brachial plexus. At 9 months after the injury, because of persistent weakness, the severely damaged upper trunk of the brachial plexus was repaired with an end-to-end graft. When 8 months later biceps function had not recovered, the patient underwent side-to-side anastomosis of the intact median nerve to the adjacent distal musculocutaneous nerve via epineural windows. By 9 months after the second surgery, biceps muscle function had returned clinically and electrodiagnostically. Postoperative electromyographic and nerve conduction studies confirmed that the biceps muscle was being reinnervated partly by donor axons from the healthy median nerve and partly by the recovering musculocutaneous nerve.

This case demonstrates that side-to-side anastomosis of an intact median to an injured musculocutaneous nerve can provide dual reinnervation of the biceps muscle while minimizing injury to both donor and recipient nerves.

Restricted access

Neil G. Simon, Tene Cage, Jared Narvid, Roger Noss, Cynthia Chin and Michel Kliot

The goals of the present study were to demonstrate the ability of high-resolution ultrasonography to delineate normal nerve fascicles within or around peripheral nerve sheath tumors (NSTs). A blinded examiner evaluated 2 patients with symptomatic upper limb NSTs with high-resolution ultrasonography performed in the perioperative suite using a portable ultrasonography system. Ultrasonographic examinations located the tumor mass and identified the normal nerve fascicles associated with the mass. The locations of normal nerve tissue were mapped and correlated with results of MR tractography, operative inspection, and intraoperative electrophysiological monitoring. The study demonstrated a close correlation between normal nerve fascicles identified by ultrasonography, MR tractography, and intraoperative electrophysiological mapping. In particular, ultrasonographic examinations accurately identified the surface regions of the tumor without overlying normal nerve tissue. These preliminary data suggest that preoperative ultrasonographic examinations may provide valuable information, supplementary to the information obtained from intraoperative electrophysiological monitoring. Identification of normal nerve tissue prior to surgery may provide additional information regarding the risk of iatrogenic nerve injury during percutaneous tumor biopsy or open resection of the tumor and may also aid in selecting the optimum surgical approach.

Restricted access

Andrew J. Gogos, Jacob S. Young, Ramin A. Morshed, Lauro N. Avalos, Roger S. Noss, Javier E. Villanueva-Meyer, Shawn L. Hervey-Jumper and Mitchel S. Berger

OBJECTIVE

Maximal safe resection of gliomas near motor pathways is facilitated by intraoperative mapping. The authors and other groups have described the use of bipolar or monopolar direct stimulation to identify functional tissue, as well as transcranial or transcortical motor evoked potentials (MEPs) to monitor motor pathways. Here, the authors describe their initial experience using all 3 modalities to identify, monitor, and preserve cortical and subcortical motor systems during glioma surgery.

METHODS

Intraoperative mapping data were extracted from a prospective registry of glioma resections near motor pathways. Additional demographic, clinical, pathological, and imaging data were extracted from the electronic medical record. All patients with new or worsened postoperative motor deficits were followed for at least 6 months.

RESULTS

Between January 2018 and August 2019, 59 operations were performed in 58 patients. Overall, patients in 6 cases (10.2%) had new or worse immediate postoperative deficits. Patients with temporary deficits all had at least Medical Research Council grade 4/5 power. Only 2 patients (3.4%) had permanently worsened deficits after 6 months, both of which were associated with diffusion restriction consistent with ischemia within the corticospinal tract. One patient’s deficit improved to 4/5 and the other to 4/5 proximally and 3/5 distally in the lower limb, allowing ambulation following rehabilitation. Subcortical motor pathways were identified in 51 cases (86.4%) with monopolar high-frequency stimulation, but only in 6 patients using bipolar stimulation. Transcranial or cortical MEPs were diminished in only 6 cases, 3 of which had new or worsened deficits, with 1 permanent deficit. Insula location (p = 0.001) and reduction in MEPs (p = 0.01) were the only univariate predictors of new or worsened postoperative deficits. Insula location was the only predictor of permanent deficits (p = 0.046). The median extent of resection was 98.0%.

CONCLUSIONS

Asleep triple motor mapping is safe and resulted in a low rate of deficits without compromising the extent of resection.