Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Robert Higgins x
Clear All Modify Search
Restricted access

Alfred C. Higgins, Robert D. Pearlstein, John B. Mullen and Blaine S. Nashold Jr.

✓ To study the acute effects of hyperbaric oxygen ventilation (HBO) on long-tract function following spinal cord trauma, the authors employed a technique for monitoring spinal cord evoked potentials (SCEP) as an objective measure of translesion neuronal conduction in cats subjected to transdural impact injuries of the spinal cord. Control animals subjected to injuries of a magnitude of 400 or 500 gm-cm occasionally demonstrated spontaneous return of translesion SCEP within 2 hours of injury when maintained by pentobarbital anesthesia and by ventilation with ambient room air at 1 atmosphere absolute pressure (1 ATA). Animals sustaining corresponding injuries but receiving immediate treatment with HBO at 2 ATA for a period of 3 hours following impact demonstrated variable responses to this treatment modality. Animals sustaining injuries of 400 gm-cm magnitude showed recovery of translesion SCEP in four of five cases, while animals sustaining injuries of 500 gm-cm magnitude responded to HBO treatment by recovery of SCEP no more frequently than did control animals. When the onset of HBO therapy was delayed by 2 hours following impact, there appeared to be no demonstrable protective effect on long-tract neuronal conduction mediated by HBO alone.

The observations suggest that HBO treatments can mediate preservation of marginally injured neuronal elements of the spinal cord long tracts during the early phases of traumatic spinal cord injury. These protective effects may be based upon the reversal of focal tissue hypoxia, or by reduction of tissue edema, or possibly by both of these mechanisms. Increasing magnitudes of impact force and delay in the onset of HBO treatment markedly diminished the protective effects of HBO on long-tract neuronal conduction following traumatic spinal cord injury.

Restricted access

Vanja Varenika, Peter Dickinson, John Bringas, Richard LeCouteur, Robert Higgins, John Park, Massimo Fiandaca, Mitchel Berger, John Sampson and Krystof Bankiewicz

Object

The authors have shown that convection-enhanced delivery (CED) of gadoteridol-loaded liposomes (GDLs) into different regions of normal monkey brain results in predictable, widespread distribution of this tracking agent as detected by real-time MR imaging. They also have found that this tracking technique allows monitoring of the distribution of similar nanosized agents such as therapeutic liposomes and viral vectors. A limitation of this procedure is the unexpected leakage of liposomes out of targeted parenchyma or malignancies into sulci and ventricles. The aim of the present study was to evaluate the efficacy of CED after the onset of these types of leakage.

Methods

The authors documented this phenomenon in a study of 5 nonhuman primates and 7 canines, comprising 54 CED infusion sessions. Approximately 20% of these infusions resulted in leakage into cerebral ventricles or sulci. All of the infusions and leakage events were monitored with real-time MR imaging. The authors created volume-distributed versus volume-infused graphs for each infusion session. These graphs revealed the rate of distribution of GDL over the course of each infusion and allowed the authors to evaluate the progress of CED before and after leakage.

Results

The distribution of therapeutics within the target structure ceased to increase or resulted in significant attenuation after the onset of leakage.

Conclusions

An analysis of the cases in this study revealed that leakage undermines the efficacy of CED. These findings reiterate the importance of real-time MR imaging visualization during CED to ensure an accurate, robust distribution of therapeutic agents.

Restricted access

Peter J. Dickinson, Richard A. Lecouteur, Robert J. Higgins, John R. Bringas, Byron Roberts, Richard F. Larson, Yoji Yamashita, Michal Krauze, Charles O. Noble, Daryl Drummond, Dmitri B. Kirpotin, John W. Park, Mitchel S. Berger and Krystof S. Bankiewicz

Object

Many factors relating to the safety and efficacy of convection-enhanced delivery (CED) into intracranial tumors are poorly understood. To investigate these factors further and establish a more clinically relevant large animal model, with the potential to investigate CED in large, spontaneous tumors, the authors developed a magnetic resonance (MR) imaging–compatible system for CED of liposomal nanoparticles into the canine brain, incorporating real-time MR imaging. Additionally any possible toxicity of liposomes containing Gd and the chemotherapeutic agent irinotecan (CPT-11) was assessed following direct intraparenchymal delivery.

Methods

Four healthy laboratory dogs were infused with liposomes containing Gd, rhodamine, or CPT-11. Convection-enhanced delivery was monitored in real time by sequential MR imaging, and the volumes of distribution were calculated from MR images and histological sections. Assessment of any toxicity was based on clinical and histopathological evaluation. Convection-enhanced delivery resulted in robust volumes of distribution in both gray and white matter, and real-time MR imaging allowed accurate calculation of volumes and pathways of distribution.

Results

Infusion variability was greatest in the gray matter, and was associated with leakage into ventricular or subarachnoid spaces. Complications were minimal and included mild transient proprioceptive deficits, focal hemorrhage in 1 dog, and focal, mild perivascular, nonsuppurative encephalitis in 1 dog.

Conclusions

Convection-enhanced delivery of liposomal Gd/CPT-11 is associated with minimal adverse effects in a large animal model, and further assessment for use in clinical patients is warranted. Future studies investigating real-time monitored CED in spontaneous gliomas in canines are feasible and will provide a unique, clinically relevant large animal translational model for testing this and other therapeutic strategies.