Search Results

You are looking at 1 - 10 of 46 items for

  • Author or Editor: Robert G. Grossman x
Clear All Modify Search
Restricted access

Claudia S. Robertson and Robert G. Grossman

✓ The effect of insulin-induced reduction in blood glucose to 65 ± 20 mg/dl (mean ± standard deviation) on recovery of electrophysiological function and extracellular lactate concentration was studied in a rabbit model of spinal cord ischemia. These results were compared to findings in animals with spinal cord ischemia that either were fasted overnight (fasted group: blood glucose 97 ± 26 mg/dl) or had no pretreatment (control group: blood glucose 172 ± 65 mg/dl). The aorta was occluded until the postsynaptic waves of the spinal somatosensory evoked potentials (SSEP's) had been absent for 20 minutes, a period of ischemia that produces paraplegia in 100% of untreated rabbits. The total aortic occlusion time was not significantly different in the three groups. Recovery of the SSEP's was significantly better in the insulin-treated animals than in the fasted or control animals. The N3 wave of the SSEP's, which has been found to correlate best with neurological recovery, returned to 65% ± 48% of the preischemia amplitude in the insulin-treated animals, compared to 40% ± 34% in the fasted group and 26% ± 24% in the control animals. Extracellular lactate concentration in the spinal cord increased immediately after occlusion of the aorta, reached a plateau as the postsynaptic waves disappeared from the SSEP's, and then increased a second time during the first 15 minutes of reperfusion. The peak lactate concentration during ischemia and during reperfusion correlated with the preischemia glucose concentration (r = 0.60336 and r = 0.76930, respectively). Lactate concentration in the spinal cord was higher during ischemia and throughout the first 2 hours of reperfusion in the control and fasted animals than in the insulin-treated animals. During the 2nd hour of reperfusion, lactate concentration was significantly higher in the control animals than in the fasted animals. Reduction in blood glucose with insulin improves recovery of electrophysiological function after spinal cord ischemia, probably because of reduced lactic acid production, especially during the early reperfusion period.

Full access

Robert G. Grossman, Charles Y. Liu and Amit Verma

Restricted access

Shankar P. Gopinath, Claudia S. Robertson, Robert G. Grossman and Britton Chance

✓ Near-infrared spectroscopy (NIRS) of the cerebral hemispheres, applied transcranially through the intact scalp and skull, was evaluated for its ability to detect the presence of an intracranial hematoma in 46 head-injured patients. In 40 patients intracranial hematomas (22 subdural, 10 epidural, eight intracerebral) were identified on computerized tomography (CT); in all 40 cases, NIRS demonstrated greater absorption of light at 760 nm on the side of the hematoma. The mean difference in optical density (OD) between the hemisphere with the hematoma and the normal hemisphere was 0.99 ± 0.30 for epidural hematomas, 0.87 ± 0.31 for subdural hematomas, but only 0.41 ± 0.11 for intracerebral hematomas. In 36 patients, the asymmetry in OD resolved after surgical evacuation of the hematoma or with spontaneous resorption of the hematoma. Four patients who developed postoperative or delayed hematomas exhibited persistence of the asymmetry in OD. Six patients had only diffuse injuries and exhibited only minor differences in OD between the hemispheres, similar to 10 patients in the control group with no head injury. It appears that NIRS is useful in the initial examination of the head-injured patient, as an adjunct to CT, and in following patients postoperatively in the intensive care unit.

Restricted access

Patrick J. Kelly, Ralph J. Gorten, Robert G. Grossman and Howard M. Eisenberg

✓ In a retrospective study of 44 patients with verified ruptured intracranial aneurysms, the results of radionuclide cerebral perfusion scintigraphy (dynamic brain scanning) and the presence or absence of arteriographic spasm were correlated with the clinical outcome. The data indicated that patients with normal dynamic scans had a better outcome as a group and following intracranial surgery than those in whom perfusion was reduced. Patients with normal perfusion had a higher incidence of preoperative rebleeding from their aneurysms, while patients with reduced perfusion had a higher incidence of infarction, especially after intracranial surgery. There was no correlation between the presence or absence of arteriographic spasm and the results of the dynamic scans, and no correlation between the presence or absence of spasm and the outcome of the group as a whole. However, in some individual cases with severe spasm, reduced perfusion on the dynamic scan and a poor outcome were noted. It was concluded that the results of the dynamic scan correlated better with eventual patient outcome than the presence or absence of arteriographic spasm. It is therefore suggested that patients in Grades I and II with normal dynamic scans be operated on promptly to prevent rebleeding, and that surgery in patients in Grades I and II with abnormal dynamic scans be delayed until the dynamic scan returns to normal.

Restricted access

Claudia S. Robertson, Richard Foltz, Robert G. Grossman and J. Clay Goodman

✓ The authors have studied the protection against ischemic damage to rabbit spinal cord by pretreatment with agents that block neuronal activity and directly or indirectly reduce tissue metabolism. Hypothermia, thiopental, magnesium, lidocaine, and naloxone were used to pretreat the spinal cord prior to ischemia. Hypothermia and thiopental provided comparable protection: they each increased the duration of ischemia required to produce neurological deficits in 50% of the animals from 26 to 41 minutes. They also increased from 10 to 30 minutes the time that the postsynaptic waves of the spinal somatosensory evoked potential (SSEP) could be absent and the animal still have neurological recovery. Hypothermia and thiopental, when used together, increased the duration of ischemia required to produce neurological deficits to 57 minutes in 50% of the animals. Naloxone increased the duration of ischemia required to produce neurological deficits to 36 minutes in 50% of the animals, and increased to 20 minutes the time that the postsynaptic waves of the SSEP could be absent and the animal still have neurological recovery. Magnesium pretreatment improved neurological outcome, possibly by improving collateral circulation as the SSEP did not fail completely during aortic occlusion in all animals. Lidocaine was not beneficial, perhaps because of the prolonged hypotension that resulted.

Restricted access

Claudia S. Robertson, Robert G. Grossman, J. Clay Goodman and Raj K. Narayan

✓ Cerebral ischemia is a common mechanism of secondary brain injury following severe head injury. The cerebral metabolic rate of oxygen (CMRO2) and of lactate (CMRL), as well as cerebral blood flow (CBF) were measured daily for 5 days after head injury in 44 comatose head-injured patients to determine if metabolic changes could identify the patients who would develop cerebral infarction. Of 41 patients whose CBF remained at levels regarded as adequate to prevent infarction (CBF ≥ 0.2 ml/gm/min), the six who showed a cerebral infarction on computerized tomography (CT) scans exhibited characteristic cerebral metabolic patterns: a CMRO2 of less than 0.6 µmol/gm/min on one or more of the days monitored, and markedly elevated cerebral lactate production (CMRL < −0.06 µmol/gm/min) on Days 1 and/or 2 after injury. Patients who had no areas of infarction on serial CT scans typically had a CMRO2 of 0.6 µmol/gm/min or higher and a low cerebral lactate production. Measurement of CMRO2 and CMRL can be obtained at the bedside and can indicate the presence of an evolving ischemic infarct after head injury.

Restricted access

Lynn F. Fitzgerald, Marlin Sandlin, David Carrier and Robert G. Grossman