Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Robert Bina x
Clear All Modify Search
Full access

Robert W. Bina, G. Michael Lemole Jr. and Travis M. Dumont

Within neurosurgery, the national mandate of the 2003 duty hour restrictions (DHR) by the Accreditation Council for Graduate Medical Education (ACGME) has been controversial. Ensuring the proper education and psychological well-being of residents while fulfilling the primary purpose of patient care has generated much debate. Most medical disciplines have developed strategies that address service needs while meeting educational goals. Additionally, there are numerous studies from those disciplines; however, they are not specifically relevant to the needs of a neurosurgical residency. The recent implementation of the 2011 DHR specifically aimed at limiting interns to 16-hourduty shifts has proven controversial and challenging across the nation for neurosurgical residencies—again bringing education and service needs into conflict.

In this report the current literature on DHR is reviewed, with special attention paid to neurosurgical residencies, discussing resident fatigue, technical training, and patient safety. Where appropriate, other specialty studies have been included. The authors believe that a one-size-fits-all approach to residency training mandated by the ACGME is not appropriate for the training of neurosurgical residents. In the authors’ opinion, an arbitrary timeline designed to limit resident fatigue limits patient care and technical training, and has not improved patient safety.

Full access

Zaman Mirzadeh, Robert Bina, Yael Kusne, Stephen W. Coons, Robert F. Spetzler and Nader Sanai

Object

After complete resection and radiation therapy, the 10-year overall survival rates for adult patients with posterior fossa ependymomas approach 85%. This favorable outcome profile emphasizes the critical importance of functional preservation to this patient population. Here, the authors identify predictors of functional outcome following microsurgical resection of adult posterior fossa ependymomas.

Methods

The authors identified adult patients with newly diagnosed WHO Grade II posterior fossa ependymomas who underwent microsurgical resection at the Barrow Neurological Institute from 1990 to 2011. Clinical and radiographic variables were collected, including volumetric extent of resection, foramen of Luschka extension, cystic changes, peritumoral T2 signal changes, Karnofsky Performance Scale (KPS) score, National Institutes of Health Stroke Scale (NIHSS) score, progression-free survival (PFS), and overall survival (OS).

Results

Forty-five patients were identified, with a median clinical follow-up of 103 months. The median PFS and OS were 6.8 and 8.6 years, respectively. Extent of resection and adjuvant radiotherapy were predictive of improved PFS (p = 0.005) and were nonsignificantly associated with improved OS. Univariate analysis revealed that tumor size (p < 0.001), cystic changes (p < 0.01), postoperative T2 signal (p < 0.01), and CSF diversion (p = 0.048) predicted functional and neurological recovery rates, based on KPS and NIHSS scores, respectively. Multivariate regression analysis identified tumor size (p < 0.001), cystic changes (p = 0.01), and CSF diversion (p = 0.02) as independent predictors of slower functional recovery, while only tumor size (p = 0.007) was an independent predictor of neurological recovery. Specifically, by 6 weeks postoperatively, baseline KPS score was recovered by only 43.8% of patients with tumors larger than 30 cm3 (vs 72.4% patients with tumors < 30 cm3), 35.3% of patients with cystic tumors (vs 78.6% of patients with noncystic tumors), and 46.7% of patients requiring CSF diversion (vs 70% of patients not requiring CSF diversion).

Conclusions

Greater extent of resection and adjuvant radiotherapy significantly improve PFS in adult patients with posterior fossa ependymomas. Tumor size, cystic changes, and the need for CSF diversion were independent predictors of the rate of functional recovery in this patient population. Taken together, these functional outcome predictors may guide preoperative estimations of recovery following microsurgical resection.

Full access

Laura A. Snyder, Andrew B. Wolf, Mark E. Oppenlander, Robert Bina, Jeffrey R. Wilson, Lynn Ashby, David Brachman, Stephen W. Coons, Robert F. Spetzler and Nader Sanai

Object

Recent evidence suggests that a greater extent of resection (EOR) extends malignant progression-free survival among patients with low-grade gliomas (LGGs). These studies, however, rely on the combined analysis of oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas—3 histological subtypes with distinct genetic and molecular compositions. To assess the value of EOR in a homogeneous LGG patient population and delineate its impact on LGG transformation, the authors examined its effect on newly diagnosed supratentorial oligodendrogliomas.

Methods

The authors identified 93 newly diagnosed adult patients with WHO Grade II oligodendrogliomas treated with microsurgical resection at Barrow Neurological Institute. Clinical, laboratory, and radiographic data were collected retrospectively, including 1p/19q codeletion status and volumetric analysis based on T2-weighted MRI.

Results

The median preoperative and postoperative tumor volumes and EOR were 29.0 cm3 (range 1.3–222.7 cm3), 5.2 cm3 (range 0–156.1 cm3), and 85% (range 6%–100%), respectively. Median follow-up was 75.4 months, and there were 14 deaths (15%). Progression and malignant progression were identified in 31 (33%) and 20 (22%) cases, respectively. A greater EOR was associated with longer overall survival (p = 0.005) and progression-free survival (p = 0.004); however, a greater EOR did not prolong the interval to malignant progression, even when controlling for 1p/19q codeletion.

Conclusions

A greater EOR is associated with an improved survival profile for patients with WHO Grade II oligodendrogliomas. However, for this particular LGG patient population, the interval to tumor transformation is not influenced by cytoreduction. These data raise the possibility that the capacity for microsurgical resection to modulate malignant progression is mediated through biological mechanisms specific to nonoligodendroglioma LGG histologies.

Full access

Mark E. Oppenlander, Andrew B. Wolf, Laura A. Snyder, Robert Bina, Jeffrey R. Wilson, Stephen W. Coons, Lynn S. Ashby, David Brachman, Peter Nakaji, Randall W. Porter, Kris A. Smith, Robert F. Spetzler and Nader Sanai

Object

Despite improvements in the medical and surgical management of patients with glioblastoma, tumor recurrence remains inevitable. For recurrent glioblastoma, however, the clinical value of a second resection remains uncertain. Specifically, what proportion of contrast-enhancing recurrent glioblastoma tissue must be removed to improve overall survival and what is the neurological cost of incremental resection beyond this threshold?

Methods

The authors identified 170 consecutive patients with recurrent supratentorial glioblastomas treated at the Barrow Neurological Institute from 2001 to 2011. All patients previously had a de novo glioblastoma and following their initial resection received standard temozolomide and fractionated radiotherapy.

Results

The mean clinical follow-up was 22.6 months and no patient was lost to follow-up. At the time of recurrence, the median preoperative tumor volume was 26.1 cm3. Following re-resection, median postoperative tumor volume was 3.1 cm3, equating to an 87.4% extent of resection (EOR). The median overall survival was 19.0 months, with a median progression-free survival following re-resection of 5.2 months. Using Cox proportional hazards analysis, the variables of age, Karnofsky Performance Scale (KPS) score, and EOR were predictive of survival following repeat resection (p = 0.0001). Interestingly, a significant survival advantage was noted with as little as 80% EOR. Recursive partitioning analysis validated these findings and provided additional risk stratification at the highest levels of EOR. Overall, at 7 days after surgery, a deterioration in the NIH stroke scale score by 1 point or more was observed in 39.1% of patients with EOR ≥ 80% as compared with 16.7% for those with EOR < 80% (p = 0.0049). This disparity in neurological morbidity, however, did not endure beyond 30 days postoperatively (p = 0.1279).

Conclusions

For recurrent glioblastomas, an improvement in overall survival can be attained beyond an 80% EOR. This survival benefit must be balanced against the risk of neurological morbidity, which does increase with more aggressive cytoreduction, but only in the early postoperative period. Interestingly, this putative EOR threshold closely approximates that reported for newly diagnosed glioblastomas, suggesting that for a subset of patients, the survival benefit of microsurgical resection does not diminish despite biological progression.