Search Results

You are looking at 1 - 10 of 52 items for

  • Author or Editor: Robert A. Hart x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Hospital charges associated with “never events”: comparison of anterior cervical discectomy and fusion, posterior lumbar interbody fusion, and lumbar laminectomy to total joint arthroplasty

Alan H. Daniels, Satoshi Kawaguchi, Alec G. Contag, Farbod Rastegar, Garrett Waagmeester, Paul A. Anderson, Melanie Arthur, and Robert A. Hart

OBJECTIVE

Beginning in 2008, the Centers for Medicare and Medicaid Service (CMS) determined that certain hospital-acquired adverse events such as surgical site infection (SSI) following spine surgery should never occur. The following year, they expanded the ruling to include deep vein thrombosis (DVT) and pulmonary embolism (PE) following total joint arthroplasty. Due to their ruling that “never events” are not the payers' responsibility, CMS insists that the costs of managing these complications be borne by hospitals and health care providers, rather than billings to health care payers for additional care required in their management. Data comparing the expected costs of such adverse events in patients undergoing spine and orthopedic surgery have not previously been reported.

METHODS

The California State Inpatient Database (CA-SID) from 2008 to 2009 was used for the analysis. All patients with primary procedure codes indicating anterior cervical discectomy and fusion (ACDF), posterior lumbar interbody fusion (PLIF), lumbar laminectomy (LL), total knee replacement (TKR), and total hip replacement (THR) were analyzed. Patients with diagnostic and/or treatment codes for DVT, PE, and SSI were separated from patients without these complication codes. Patients with more than 1 primary procedure code or more than 1 complication code were excluded. Median charges for treatment from primary surgery through 3 months postoperatively were calculated.

RESULTS

The incidence of the examined adverse events was lowest for ACDF (0.6% DVT, 0.1% PE, and 0.03% SSI) and highest for TKA (1.3% DVT, 0.3% PE, 0.6% SSI). Median inpatient charges for uncomplicated LL was $51,817, compared with $73,432 for ACDF, $143,601 for PLIF, $74,459 for THR, and $70,116 for TKR. Charges for patients with DVT ranged from $108,387 for TKR (1.5 times greater than index) to $313,536 for ACDF (4.3 times greater than index). Charges for patients with PE ranged from $127,958 for TKR (1.8 times greater than index) to $246,637 for PLIF (1.7 times greater than index). Charges for patients with SSI ranged from $168,964 for TKR (2.4 times greater than index) to $385,753 for PLIF (2.7 times greater than index).

CONCLUSIONS

Although incidence rates are low, adverse events of spinal procedures substantially increase the cost of care. Charges for patients experiencing DVT, PE, and SSI increased in this study by factors ranging from 1.8 to 4.3 times those for patients without such complications across 5 common spinal and orthopedic procedures. Cost projections by health care providers will need to incorporate expected costs of added care for patients experiencing such complications, assuming that the cost burden of such events continues to shift from payers to providers.

Restricted access

High-grade spondylolisthesis treated using a modified Bohlman technique: results among multiple surgeons

Clinical article

Robert A. Hart, Christopher M. Domes, Brady Goodwin, Charles R. D'Amato, Jung U. Yoo, Ronald J. Turker, and Matthew F. Halsey

Object

The ideal surgical management of high-grade spondylolisthesis remains unclear. Concerns regarding the original Bohlman transsacral interbody fusion technique with stand-alone autologous fibular strut include late graft fracture and incomplete reduction of lumbosacral kyphosis. The authors' goal was to evaluate the radiographic and surgical outcomes of patients treated for high-grade spondylolisthesis with either transsacral S-1 screws or standard pedicle screw fixation augmenting the Bohlman posterior transsacral interbody fusion technique.

Methods

A retrospective review of patients who underwent fusion for high-grade spondylolisthesis in which a Bohlman oblique posterior interbody fusion augmented with either transsacral or standard pedicle screw fixation was performed by 4 spine surgeons was completed. Estimated blood loss, operating time, perioperative complications, and need for revision surgery were evaluated. Upright pre- and postsurgical lumbar spine radiographs were compared for slip percent and slip angle.

Results

Sixteen patients (12 female and 4 male) with an average age of 29 years (range 9–66 years) were evaluated. The average clinical follow-up was 78 months (range 5–137 months) and the average radiographic follow-up was 48 months (range 5–108 months). Ten L4–S1 and 6 L5–S1 fusions were performed. Five fibular struts and 11 titanium mesh cages were used for interbody fusion. Six patients had isolated transsacral screws placed, with 2 (33%) of the 6 requiring revision surgery for nonunion. No nonunions were observed in patients undergoing spanning pedicle screw fixation augmenting the interbody graft. Six patients experienced perioperative complications including 3 iliac crest site infections, 1 L-5 radiculopathy without motor involvement, 1 deep vein thrombosis, and 1 epidural hematoma requiring irrigation and debridement. The average estimated blood loss and operating times were 763 ml and 360 minutes, respectively. Slip percent improved from an average of 62% to 37% (n = 16; p < 0.01) and slip angle improved from an average of 18° to 8° (n = 16; p < 0.01). No patient experienced L-5 or other motor deficit postoperatively.

Conclusions

The modified Bohlman technique for treatment of high-grade spondylolisthesis has reproducible outcomes among multiple surgeons and results in significant improvements in slip percent and slip angle. Fusion rates were high (14 of 16; 88%), especially with spanning instrumentation augmenting the oblique interbody fusion. Rates of L-5 motor deficit were low in comparison with techniques involving reduction of the anterolisthesis.

Restricted access

Sagittal realignment failures following pedicle subtraction osteotomy surgery: are we doing enough?

Clinical article

Frank J. Schwab, Ashish Patel, Christopher I. Shaffrey, Justin S. Smith, Jean-Pierre Farcy, Oheneba Boachie-Adjei, Richard A. Hostin, Robert A. Hart, Behrooz A. Akbarnia, Douglas C. Burton, Shay Bess, and Virginie Lafage

Object

Pedicle subtraction osteotomy (PSO) is a surgical procedure that is frequently performed on patients with sagittal spinopelvic malalignment. Although it allows for substantial spinopelvic realignment, suboptimal realignment outcomes have been reported in up to 33% of patients. The authors' objective in the present study was to identify differences in radiographic profiles and surgical procedures between patients achieving successful versus failed spinopelvic realignment following PSO.

Methods

This study is a multicenter retrospective consecutive PSO case series. The authors evaluated 99 cases involving patients who underwent PSO for sagittal spinopelvic malalignment. Because precise cutoffs of acceptable residual postoperative sagittal vertical axis (SVA) values have not been well defined, comparisons were focused between patient groups with a postoperative SVA that could be clearly considered either a success or a failure. Only cases in which the patients had a postoperative SVA of less than 50 mm (successful PSO realignment) or more than 100 mm (failed PSO realignment) were included in the analysis. Radiographic measures and PSO parameters were compared between successful and failed PSO realignments.

Results

Seventy-nine patients met the inclusion criteria. Successful realignment was achieved in 61 patients (77%), while realignment failed in 18 (23%). Patients with failed realignment had larger preoperative SVA (mean 217.9 vs 106.7 mm, p < 0.01), larger pelvic tilt (mean 36.9° vs 30.7°, p < 0.01), larger pelvic incidence (mean 64.2° vs 53.7°, p < 0.01), and greater lumbar lordosis–pelvic incidence mismatch (−47.1° vs −30.9°, p < 0.01) compared with those in whom realignment was successful. Failed and successful realignments were similar regarding the vertebral level of the PSO, the median size of wedge resection 22.0° (interquartile range 16.5°−28.5°), and the numerical changes in pre- and postoperative spinopelvic parameters (p > 0.05).

Conclusions

Patients with failed PSO realignments had significantly larger preoperative spinopelvic deformity than patients in whom realignment was successful. Despite their apparent need for greater correction, the patients in the failed realignment group only received the same amount of correction as those in the successfully realigned patients. A single-level standard PSO may not achieve optimal outcome in patients with high preoperative spinopelvic sagittal malalignment. Patients with large spinopelvic deformities should receive larger osteotomies or additional corrective procedures beyond PSOs to avoid undercorrection.

Restricted access

Multicenter validation of a formula predicting postoperative spinopelvic alignment

Clinical article

Virginie Lafage, Neil J. Bharucha, Frank Schwab, Robert A. Hart, Douglas Burton, Oheneba Boachie-Adjei, Justin S. Smith, Richard Hostin, Christopher Shaffrey, Munish Gupta, Behrooz A. Akbarnia, and Shay Bess

Object

Sagittal spinopelvic imbalance is a major contributor to pain and disability for patients with adult spinal deformity (ASD). Preoperative planning is essential for pedicle subtraction osteotomy (PSO) candidates; however, current methods are often inaccurate because no formula to date predicts both postoperative sagittal balance and pelvic alignment. The authors of this study aimed to evaluate the accuracy of 2 novel formulas in predicting postoperative spinopelvic alignment after PSO.

Methods

This study is a multicenter retrospective consecutive PSO case series. Adults with spinal deformity (> 21 years old) who were treated with a single-level lumbar PSO for sagittal imbalance were evaluated. All patients underwent preoperative and a minimum of 6-month postoperative radiography. Two novel formulas were used to predict the postoperative spinopelvic alignment. The results predicted by the formulas were then compared with the actual postoperative radiographic values, and the formulas' ability to identify successful (sagittal vertical axis [SVA] ≤ 50 mm and pelvic tilt [PT] ≤ 25°) and unsuccessful (SVA > 50 mm or PT > 25°) outcomes was evaluated.

Results

Ninety-nine patients met inclusion criteria. The median absolute error between the predicted and actual PT was 4.1° (interquartile range 2.0°–6.4°). The median absolute error between the predicted and actual SVA was 27 mm (interquartile range 11–47 mm). Forty-one of 54 patients with a formula that predicted a successful outcome had a successful outcome as shown by radiography (positive predictive value = 0.76). Forty-four of 45 patients with a formula that predicted an unsuccessful outcome had an unsuccessful outcome as shown by radiography (negative predictive value = 0.98).

Conclusions

The spinopelvic alignment formulas were accurate when predicting unsuccessful outcomes but less reliable when predicting successful outcomes. The preoperative surgical plan should be altered if an unsuccessful result is predicted. However, even after obtaining a predicted successful outcome, surgeons should ensure that the predicted values are not too close to unsuccessful values and should identify other variables that may affect alignment. In the near future, it is anticipated that the use of these formulas will lead to better surgical planning and improved outcomes for patients with complex ASD.

Free access

Rates of early complications and mortality in patients older than 80 years of age after surgical treatment of acute traumatic spinal fractures: ankylosing spondylitis versus osteoporosis

Basem Ishak, Sven Frieler, Tarush Rustagi, Alexander von Glinski, Ronen Blecher, Daniel C. Norvell, Andreas Unterberg, Sarah Strot, Jeffrey Roh, Robert A. Hart, Rod Oskouian, and Jens R. Chapman

OBJECTIVE

The purpose of this retrospective cohort study was to analyze the early complications and mortality associated with multilevel spine surgery for unstable fractures in patients older than 80 years of age with ankylosing spondylitis and to compare the results with an age- and sex-matched cohort of patients with unstable osteoporotic fractures.

METHODS

A retrospective review of the electronic medical records at a single institution was conducted between January 2014 and December 2019. Patient demographics, surgical characteristics, complications, hospital course, and 90-day mortality were collected. Comorbidities were stratified using the age-adjusted Charlson Comorbidity Index (CCI).

RESULTS

Among 11,361 surgically treated patients, 22 patients with ankylosing spondylitis (AS group) and 24 patients with osteoporosis (OS group) were identified. The mean ages were 83.1 ± 3.1 years and 83.2 ± 2.6 years, respectively. A significant difference in the mean CCI score was found (7.6 vs 5.6; p < 0.001). Multilevel posterior fusion procedures were conducted in all patients, with 6.7 ± 1.4 fused levels in the AS group and 7.1 ± 1.1 levels fused in the OS group (p > 0.05). Major complications developed in 10 patients (45%) in the AS group compared with 4 patients (17%) in the OS group (p < 0.05). The 90-day mortality was 36% in the AS group compared with 0% in the OS group (p < 0.001).

CONCLUSIONS

Patients older than 80 years of age with AS bear a high risk of adverse events after multilevel spinal fusion procedures. The high morbidity and 90-day mortality should be clearly discussed and carefully weighed against surgical treatment.

Restricted access

Comprehensive study of back and leg pain improvements after adult spinal deformity surgery: analysis of 421 patients with 2-year follow-up and of the impact of the surgery on treatment satisfaction

Justin K. Scheer, Justin S. Smith, Aaron J. Clark, Virginie Lafage, Han Jo Kim, John D. Rolston, Robert Eastlack, Robert A. Hart, Themistocles S. Protopsaltis, Michael P. Kelly, Khaled Kebaish, Munish Gupta, Eric Klineberg, Richard Hostin, Christopher I. Shaffrey, Frank Schwab, Christopher P. Ames, and the International Spine Study Group

OBJECT

Back and leg pain are the primary outcomes of adult spinal deformity (ASD) and predict patients' seeking of surgical management. The authors sought to characterize changes in back and leg pain after operative or nonoperative management of ASD. Outcomes were assessed according to pain severity, type of surgical procedure, Scoliosis Research Society (SRS)–Schwab spine deformity class, and patient satisfaction.

METHODS

This study retrospectively reviewed data in a prospective multicenter database of ASD patients. Inclusion criteria were the following: age > 18 years and presence of spinal deformity as defined by a scoliosis Cobb angle ≥ 20°, sagittal vertical axis length ≥ 5 cm, pelvic tilt angle ≥ 25°, or thoracic kyphosis angle ≥ 60°. Patients were grouped into nonoperated and operated subcohorts and by the type of surgical procedure, spine SRS-Schwab deformity class, preoperative pain severity, and patient satisfaction. Numerical rating scale (NRS) scores of back and leg pain, Oswestry Disability Index (ODI) scores, physical component summary (PCS) scores of the 36-Item Short Form Health Survey, minimum clinically important differences (MCIDs), and substantial clinical benefits (SCBs) were assessed.

RESULTS

Patients in whom ASD had been operatively managed were 6 times more likely to have an improvement in back pain and 3 times more likely to have an improvement in leg pain than patients in whom ASD had been nonoperatively managed. Patients whose ASD had been managed nonoperatively were more likely to have their back or leg pain remain the same or worsen. The incidence of postoperative leg pain was 37.0% at 6 weeks postoperatively and 33.3% at the 2-year follow-up (FU). At the 2-year FU, among patients with any preoperative back or leg pain, 24.3% and 37.8% were free of back and leg pain, respectively, and among patients with severe (NRS scores of 7–10) preoperative back or leg pain, 21.0% and 32.8% were free of back and leg pain, respectively. Decompression resulted in more patients having an improvement in leg pain and their pain scores reaching MCID. Although osteotomies improved back pain, they were associated with a higher incidence of leg pain. Patients whose spine had an SRS-Schwab coronal curve Type N deformity (sagittal malalignment only) were least likely to report improvements in back pain. Patients with a Type L deformity were most likely to report improved back or leg pain and to have reductions in pain severity scores reaching MCID and SCB. Patients with a Type D deformity were least likely to report improved leg pain and were more likely to experience a worsening of leg pain. Preoperative pain severity affected pain improvement over 2 years because patients who had higher preoperative pain severity experienced larger improvements, and their changes in pain severity were more likely to reach MCID/SCB than for those reporting lower preoperative pain. Reductions in back pain contributed to improvements in ODI and PCS scores and to patient satisfaction more than reductions in leg pain did.

CONCLUSIONS

The authors' results provide a valuable reference for counseling patients preoperatively about what improvements or worsening in back or leg pain they may experience after surgical intervention for ASD.

Free access

Reoperation rates and impact on outcome in a large, prospective, multicenter, adult spinal deformity database

Clinical article

Justin K. Scheer, Jessica A. Tang, Justin S. Smith, Eric Klineberg, Robert A. Hart, Gregory M. Mundis Jr., Douglas C. Burton, Richard Hostin, Michael F. O'Brien, Shay Bess, Khaled M. Kebaish, Vedat Deviren, Virginie Lafage, Frank Schwab, Christopher I. Shaffrey, Christopher P. Ames, and the International Spine Study Group

Object

Complications and reoperation for surgery to correct adult spinal deformity are not infrequent, and many studies have analyzed the rates and factors that influence the likelihood of reoperation. However, there is a need for more comprehensive analyses of reoperation in adult spinal deformity surgery from a global standpoint, particularly focusing on the 1st year following operation and considering radiographic parameters and the effects of reoperation on health-related quality of life (HRQOL). This study attempts to determine the prevalence of reoperation following surgery for adult spinal deformity, assess the indications for these reoperations, evaluate for a relation between specific radiographic parameters and the need for reoperation, and determine the potential impact of reoperation on HRQOL measures.

Methods

A retrospective review was conducted of a prospective, multicenter, adult spinal deformity database collected through the International Spine Study Group. Data collected included age, body mass index, sex, date of surgery, information regarding complications, reoperation dates, length of stay, and operation time. The radiographic parameters assessed were total number of levels instrumented, total number of interbody fusions, C-7 sagittal vertical axis, uppermost instrumented vertebra (UIV) location, and presence of 3-column osteotomies. The HRQOL assessment included Oswestry Disability Index (ODI), 36-Item Short Form Health Survey physical component and mental component summary, and SRS-22 scores. Smoking history, Charlson Comorbidity Index scores, and American Society of Anesthesiologists Physical Status classification grades were also collected and assessed for correlation with risk of early reoperation. Various statistical tests were performed for evaluation of specific factors listed above, and the level of significance was set at p < 0.05.

Results

Fifty-nine (17%) of a total of 352 patients required reoperation. Forty-four (12.5%) of the reoperations occurred within 1 year after the initial surgery, including 17 reoperations (5%) within 30 days.

Two hundred sixty-eight patients had a minimum of 1 year of follow-up. Fifty-three (20%) of these patients had a 3-column osteotomy, and 10 (19%) of these 53 required reoperation within 1 year of the initial procedure. However, 3-column osteotomy was not predictive of reoperation within 1 year, p = 0.5476). There were no significant differences between groups with regard to the distribution of UIV, and UIV did not have a significant effect on reoperation rates. Patients needing reoperation within 1 year had worse ODI and SRS-22 scores measured at 1-year follow-up than patients not requiring operation.

Conclusions

Analysis of data from a large multicenter adult spinal deformity database shows an overall 17% reoperation rate, with a 19% reoperation rate for patients treated with 3-column osteotomy and a 16% reoperation rate for patients not treated with 3-column osteotomy. The most common indications for reoperation included instrumentation complications and radiographic failure. Reoperation significantly affected HRQOL outcomes at 1-year follow-up. The need for reoperation may be minimized by carefully considering spinal alignment, termination of fixation, and type of surgical procedure (presence of osteotomy). Precautions should be taken to avoid malposition or instrumentation (rod) failure.

Full access

Validation of the recently developed Total Disability Index: a single measure of disability in neck and back pain patients

Dana L. Cruz, Ethan W. Ayres, Matthew A. Spiegel, Louis M. Day, Robert A. Hart, Christopher P. Ames, Douglas C. Burton, Justin S. Smith, Christopher I. Shaffrey, Frank J. Schwab, Thomas J. Errico, Shay Bess, Virginie Lafage, and Themistocles S. Protopsaltis

OBJECTIVE

Neck and back pain are highly prevalent conditions that account for major disability. The Neck Disability Index (NDI) and Oswestry Disability Index (ODI) are the two most common functional status measures for neck and back pain. However, no single instrument exists to evaluate patients with concurrent neck and back pain. The recently developed Total Disability Index (TDI) combines overlapping elements from the ODI and NDI with the unique items from each. This study aimed to prospectively validate the TDI in patients with spinal deformity, back pain, and/or neck pain.

METHODS

This study is a retrospective review of prospectively collected data from a single center. The 14-item TDI, derived from ODI and NDI domains, was administered to consecutive patients presenting to a spine practice. Patients were assessed using the ODI, NDI, and EQ-5D. Validation of internal consistency, test-retest reproducibility, and validity of reconstructed NDI and ODI scores derived from TDI were assessed.

RESULTS

A total of 252 patients (mean age 55 years, 56% female) completed initial assessments (back pain, n = 115; neck pain, n = 52; back and neck pain, n = 55; spinal deformity, n = 55; and no pain/deformity, n = 29). Of these patients, 155 completed retests within 14 days. Patients represented a wide range of disability (mean ODI score: 36.3 ± 21.6; NDI score: 30.8 ± 21.8; and TDI score: 34.1 ± 20.0). TDI demonstrated excellent internal consistency (Cronbach’s alpha = 0.922) and test-retest reliability (intraclass correlation coefficient = 0.96). Differences between actual and reconstructed scores were not clinically significant. Subanalyses demonstrated TDI’s ability to quantify the degree of disability due to back or neck pain in patients complaining of pain in both regions.

CONCLUSIONS

The TDI is a valid and reliable disability measure in patients with back and/or neck pain and can capture each spine region’s contribution to total disability. The TDI could be a valuable method for total spine assessment in a clinical setting, and its completion is less time consuming than that for both the ODI and NDI.

Free access

Complications and intercenter variability of three-column osteotomies for spinal deformity surgery: a retrospective review of 423 patients

Kristina Bianco, Robert Norton, Frank Schwab, Justin S. Smith, Eric Klineberg, Ibrahim Obeid, Gregory Mundis Jr., Christopher I. Shaffrey, Khaled Kebaish, Richard Hostin, Robert Hart, Munish C. Gupta, Douglas Burton, Christopher Ames, Oheneba Boachie-Adjei, Themistocles S. Protopsaltis, and Virginie Lafage

Object

Three-column resection osteotomies (3COs) are commonly performed for sagittal deformity but have high rates of reported complications. Authors of this study aimed to examine the incidence of and intercenter variability in major intraoperative complications (IOCs), major postoperative complications (POCs) up to 6 weeks postsurgery, and overall complications (that is, both IOCs and POCs). They also aimed to investigate the incidence of and intercenter variability in blood loss during 3CO procedures.

Methods

The incidence of IOCs, POCs, and overall complications associated with 3COs were retrospectively determined for the study population and for each of 8 participating surgical centers. The incidence of major blood loss (MBL) over 4 L and the percentage of total blood volume lost were also determined for the study population and each surgical center. Complication rates and blood loss were compared between patients with one and those with two osteotomies, as well as between patients with one thoracic osteotomy (ThO) and those with one lumbar or sacral osteotomy (LSO). Risk factors for developing complications were determined.

Results

Retrospective review of prospectively acquired data for 423 consecutive patients who had undergone 3CO at 8 surgical centers was performed. The incidence of major IOCs, POCs, and overall complications was 7%, 39%, and 42%, respectively, for the study population overall. The most common IOC was spinal cord deficit (2.6%) and the most common POC was unplanned return to the operating room (19.4%). Patients with two osteotomies had more POCs (56% vs 38%, p = 0.04) than the patients with one osteotomy. Those with ThO had more IOCs (16% vs 6%, p = 0.03), POCs (58% vs 34%, p < 0.01), and overall complications (67% vs 37%, p < 0.01) than the patients with LSO. There was significant variation in the incidence of IOCs, POCs, and overall complications among the 8 sites (p < 0.01). The incidence of MBL was 24% for the study population, which varied significantly between sites (p < 0.01). Patients with MBL had a higher risk of IOCs, POCs, and overall complications (OR 2.15, 1.76, and 2.01, respectively). The average percentage of total blood volume lost was 55% for the study population, which also varied among sites (p < 0.01).

Conclusions

Given the complexity of 3COs for spinal deformity, it is important for spine surgeons to understand the risk factors and complication rates associated with these procedures. In this study, the overall incidence of major complications following 3CO procedures was 42%. Risks for developing complications included an older age (> 60 years), two osteotomies, ThO, and MBL.

Free access

Predicting the combined occurrence of poor clinical and radiographic outcomes following cervical deformity corrective surgery

Samantha R. Horn, Peter G. Passias, Cheongeun Oh, Virginie Lafage, Renaud Lafage, Justin S. Smith, Breton Line, Neel Anand, Frank A. Segreto, Cole A. Bortz, Justin K. Scheer, Robert K. Eastlack, Vedat Deviren, Praveen V. Mummaneni, Alan H. Daniels, Paul Park, Pierce D. Nunley, Han Jo Kim, Eric O. Klineberg, Douglas C. Burton, Robert A. Hart, Frank J. Schwab, Shay Bess, Christopher I. Shaffrey, Christopher P. Ames, and the International Spine Study Group

OBJECTIVE

Cervical deformity (CD) correction is clinically challenging. There is a high risk of developing complications with these highly complex procedures. The aim of this study was to use baseline demographic, clinical, and surgical factors to predict a poor outcome following CD surgery.

METHODS

The authors performed a retrospective review of a multicenter prospective CD database. CD was defined as at least one of the following: cervical kyphosis (C2–7 Cobb angle > 10°), cervical scoliosis (coronal Cobb angle > 10°), C2–7 sagittal vertical axis (cSVA) > 4 cm, or chin-brow vertical angle (CBVA) > 25°. Patients were categorized based on having an overall poor outcome or not. Health-related quality of life measures consisted of Neck Disability Index (NDI), EQ-5D, and modified Japanese Orthopaedic Association (mJOA) scale scores. A poor outcome was defined as having all 3 of the following categories met: 1) radiographic poor outcome: deterioration or severe radiographic malalignment 1 year postoperatively for cSVA or T1 slope–cervical lordosis mismatch (TS-CL); 2) clinical poor outcome: failing to meet the minimum clinically important difference (MCID) for NDI or having a severe mJOA Ames modifier; and 3) complications/reoperation poor outcome: major complication, death, or reoperation for a complication other than infection. Univariate logistic regression followed by multivariate regression models was performed, and internal validation was performed by calculating the area under the curve (AUC).

RESULTS

In total, 89 patients with CD were included (mean age 61.9 years, female sex 65.2%, BMI 29.2 kg/m2). By 1 year postoperatively, 18 (20.2%) patients were characterized as having an overall poor outcome. For radiographic poor outcomes, patients’ conditions either deteriorated or remained severe for TS-CL (73% of patients), cSVA (8%), horizontal gaze (34%), and global SVA (28%). For clinical poor outcomes, 80% and 60% of patients did not reach MCID for EQ-5D and NDI, respectively, and 24% of patients had severe symptoms (mJOA score 0–11). For the complications/reoperation poor outcome, 28 patients experienced a major complication, 11 underwent a reoperation, and 1 had a complication-related death. Of patients with a poor clinical outcome, 75% had a poor radiographic outcome; 35% of poor radiographic and 37% of poor clinical outcome patients had a major complication. A poor outcome was predicted by the following combination of factors: osteoporosis, baseline neurological status, use of a transition rod, number of posterior decompressions, baseline pelvic tilt, T2–12 kyphosis, TS-CL, C2–T3 SVA, C2–T1 pelvic angle (C2 slope), global SVA, and number of levels in maximum thoracic kyphosis. The final model predicting a poor outcome (AUC 86%) included the following: osteoporosis (OR 5.9, 95% CI 0.9–39), worse baseline neurological status (OR 11.4, 95% CI 1.8–70.8), baseline pelvic tilt > 20° (OR 0.92, 95% CI 0.85–0.98), > 9 levels in maximum thoracic kyphosis (OR 2.01, 95% CI 1.1–4.1), preoperative C2–T3 SVA > 5.4 cm (OR 1.01, 95% CI 0.9–1.1), and global SVA > 4 cm (OR 3.2, 95% CI 0.09–10.3).

CONCLUSIONS

Of all CD patients in this study, 20.2% had a poor overall outcome, defined by deterioration in radiographic and clinical outcomes, and a major complication. Additionally, 75% of patients with a poor clinical outcome also had a poor radiographic outcome. A poor overall outcome was most strongly predicted by severe baseline neurological deficit, global SVA > 4 cm, and including more of the thoracic maximal kyphosis in the construct.