Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Richard Price x
Clear All Modify Search
Restricted access

Caitlin W. Burke, Alexander L. Klibanov, Jason P. Sheehan and Richard J. Price


In this study, the authors sought determine whether microbubble (MB) destruction with pulsed low duty cycle ultrasound can be used to reduce brain tumor perfusion and growth through nonthermal microvascular ablation.


Studies using C57BLJ6/Rag-1 mice inoculated subcutaneously with C6 glioma cells were approved by the institutional animal care and use committee. Microbubbles were injected intravenously, and 1 MHz ultrasound was applied with varying duty cycles to the tumor every 5 seconds for 60 minutes. During treatment, tumor heating was quantified. Following treatment, tumor growth, hemodynamics, necrosis, and apoptosis were measured.


Tumor blood flow was significantly reduced immediately after treatment, with posttreatment flow ranging from 36% (0.00002 duty cycle) to 4% (0.01 duty cycle) of pretreatment flow. Seven days after treatment, tumor necrosis and apoptosis were significantly increased in all treatment groups, while treatment with ultrasound duty cycles of 0.005 and 0.01 inhibited tumor growth by 63% and 75%, respectively, compared with untreated tumors. While a modest duty cycle–dependent increase in intratumor temperature was observed, it is unlikely that thermal tissue ablation occurred.


In a subcutaneous C6 glioma model, MB destruction with low–duty cycle 1-MHz ultrasound can be used to markedly inhibit growth, without substantial tumor tissue heating. These results may have a bearing on the development of transcranial high-intensity focused ultrasound treatments for brain tumors that are not amenable to thermal ablation.

Full access

Jarod L. Roland, Richard L. Price, Ashwin A. Kamath, S. Hassan Akbari, Eric C. Leuthardt, Brandon A. Miller and Matthew D. Smyth

The authors describe 2 cases of triventricular hydrocephalus initially presenting as aqueductal stenosis that subsequently developed tumors of the pineal and tectal region. The first case resembled late-onset idiopathic aqueductal stenosis on serial imaging. Subsequent imaging revealed a new tumor in the pineal region causing mass effect on the midbrain. The second case presented in a more typical pattern of aqueductal stenosis during infancy. On delayed follow-up imaging, an enlarging tectal mass was discovered. In both cases hydrocephalus was successfully treated by cerebrospinal fluid diversion prior to tumor presentation. The differential diagnoses, diagnostic testing, and treatment course for these unusual cases are discussed. The importance of follow-up MRI in cases of idiopathic aqueductal stenosis is emphasized by these exemplar cases.

Restricted access

Michael D. Dan, Christopher M. Schlachta, John Guy, Richard G. McKenzie, Delbert R. Dorscheid, Victor A. Sandor, Jean-Guy Villemure and Gerald B. Price

✓ The current management of malignant gliomas is unsatisfactory compared to that of other solid tumors; the expected median survival period is less than 1 year with the patient undergoing conventional surgery, radiotherapy, and chemotherapy treatment. Immunological reagents could be a useful adjunct. Human monoclonal antibodies derived from patients with astrocytic tumors might recognize subtle antigenic specificities that would differ from those recognized by xenogeneic (murine) systems. Five hybridomas, designated as BT27/1A2, BT27/2A3, BT32/A6, BT34/A5, and BT54/B8, were produced from the fusion of peripheral blood lymphocytes of four patients with astrocytic tumors to the human myeloma-like cell line TM-H2-SP2. This cell line has a 46, XX karotype and is negative for hypoxanthine guanine phosphoribosyltransferase. All five human monoclonal antibodies produced 2.4 to 44 µg/ml of immunoglobulin M, had a similar but not identical pattern of reactivity against a panel of human tumor cell lines, and failed to react with normal human astrocytes. Labeling of four neuroectodermal tumor explant cultures by BT27/2A3 was demonstrated by flow cytometry. Karyotyping of three of the five hybridomas demonstrated that two were pseudodiploid (2–3n) and one hypodiploid (< 2n). The monoclonality of the hybridomas was evaluated by Southern blot analysis of JH gene rearrangements, revealing two types of rearrangements for each hybridoma, both consistent with monoclonality. Preliminary antigen characterization indicated that at least four of the five human monoclonal antibodies were directed to cell-surface glycolipids.

Full access

Robert F. Dallapiazza, Kelsie F. Timbie, Stephen Holmberg, Jeremy Gatesman, M. Beatriz Lopes, Richard J. Price, G. Wilson Miller and W. Jeffrey Elias


Ultrasound can be precisely focused through the intact human skull to target deep regions of the brain for stereotactic ablations. Acoustic energy at much lower intensities is capable of both exciting and inhibiting neural tissues without causing tissue heating or damage. The objective of this study was to demonstrate the effects of low-intensity focused ultrasound (LIFU) for neuromodulation and selective mapping in the thalamus of a large-brain animal.


Ten Yorkshire swine (Sus scrofa domesticus) were used in this study. In the first neuromodulation experiment, the lemniscal sensory thalamus was stereotactically targeted with LIFU, and somatosensory evoked potentials (SSEPs) were monitored. In a second mapping experiment, the ventromedial and ventroposterolateral sensory thalamic nuclei were alternately targeted with LIFU, while both trigeminal and tibial evoked SSEPs were recorded. Temperature at the acoustic focus was assessed using MR thermography. At the end of the experiments, all tissues were assessed histologically for damage.


LIFU targeted to the ventroposterolateral thalamic nucleus suppressed SSEP amplitude to 71.6% ± 11.4% (mean ± SD) compared with baseline recordings. Second, we found a similar degree of inhibition with a high spatial resolution (∼ 2 mm) since adjacent thalamic nuclei could be selectively inhibited. The ventromedial thalamic nucleus could be inhibited without affecting the ventrolateral nucleus. During MR thermography imaging, there was no observed tissue heating during LIFU sonications and no histological evidence of tissue damage.


These results suggest that LIFU can be safely used to modulate neuronal circuits in the central nervous system and that noninvasive brain mapping with focused ultrasound may be feasible in humans.