Search Results

You are looking at 1 - 10 of 36 items for

  • Author or Editor: Richard Hostin x
Clear All Modify Search
Free access

Ian McCarthy, Michael O'Brien, Christopher Ames, Chessie Robinson, Thomas Errico, David W. Polly Jr. and Richard Hostin

Object

Incremental cost-effectiveness analysis is critical to the efficient allocation of health care resources; however, the incremental cost-effectiveness ratio (ICER) of surgical versus nonsurgical treatment for adult spinal deformity (ASD) has eluded the literature, due in part to inherent empirical difficulties when comparing surgical and nonsurgical patients. Using observed preoperative health-related quality of life (HRQOL) for patients who later underwent surgery, this study builds a statistical model to predict hypothetical quality-adjusted life years (QALYs) without surgical treatment. The analysis compares predicted QALYs to observed postoperative QALYs and forms the resulting ICER.

Methods

This was a single-center (Baylor Scoliosis Center) retrospective analysis of consecutive patients undergoing primary surgery for ASD. Total costs (expressed in 2010 dollars) incurred by the hospital for each episode of surgical care were collected from administrative data and QALYs were calculated from the 6-dimensional Short-Form Health Survey, each discounted at 3.5% per year. Regression analysis was used to predict hypothetical QALYs without surgery based on preoperative longitudinal data for 124 crossover surgical patients with similar diagnoses, baseline HRQOL, age, and sex compared with the surgical cohort. Results were projected through 10-year follow-up, and the cost-effectiveness acceptability curve (CEAC) was estimated using nonparametric bootstrap methods.

Results

Three-year follow-up was available for 120 (66%) of 181 eligible patients, who were predominantly female (89%) with average age of 50. With discounting, total costs averaged $125,407, including readmissions, with average QALYs of 1.93 at 3-year follow-up. Average QALYs without surgery were predicted to be 1.6 after 3 years. At 3- and 5-year follow-up, the ICER was $375,000 and $198,000, respectively. Projecting through 10-year follow-up, the ICER was $80,000. The 10-year CEAC revealed a 40% probability that the ICER was $80,000 or less, a 90% probability that the ICER was $90,000 or less, and a 100% probability that the ICER was less than $100,000.

Conclusions

Based on the WHO's suggested upper threshold for cost-effectiveness (3 times per capita GDP, or $140,000 in 2010 dollars), the analysis reveals that surgical treatment for ASD is cost-effective after a 10-year period based on predicted deterioration in HRQOL without surgery. The ICER well exceeds the WHO threshold at earlier follow-up intervals, highlighting the importance of the durability of surgical treatment in assessing the value of surgical intervention. Due to the study's methodology, the results are dependent on the predicted deterioration in HRQOL without surgery. As such, the results may not extend to patients whose HRQOL would remain steady without surgery. Future research should therefore pursue a direct comparison of QALYs for surgical and nonsurgical patients to better understand the cost-effectiveness of surgery for the average ASD patient.

Restricted access

Virginie Lafage, Neil J. Bharucha, Frank Schwab, Robert A. Hart, Douglas Burton, Oheneba Boachie-Adjei, Justin S. Smith, Richard Hostin, Christopher Shaffrey, Munish Gupta, Behrooz A. Akbarnia and Shay Bess

Object

Sagittal spinopelvic imbalance is a major contributor to pain and disability for patients with adult spinal deformity (ASD). Preoperative planning is essential for pedicle subtraction osteotomy (PSO) candidates; however, current methods are often inaccurate because no formula to date predicts both postoperative sagittal balance and pelvic alignment. The authors of this study aimed to evaluate the accuracy of 2 novel formulas in predicting postoperative spinopelvic alignment after PSO.

Methods

This study is a multicenter retrospective consecutive PSO case series. Adults with spinal deformity (> 21 years old) who were treated with a single-level lumbar PSO for sagittal imbalance were evaluated. All patients underwent preoperative and a minimum of 6-month postoperative radiography. Two novel formulas were used to predict the postoperative spinopelvic alignment. The results predicted by the formulas were then compared with the actual postoperative radiographic values, and the formulas' ability to identify successful (sagittal vertical axis [SVA] ≤ 50 mm and pelvic tilt [PT] ≤ 25°) and unsuccessful (SVA > 50 mm or PT > 25°) outcomes was evaluated.

Results

Ninety-nine patients met inclusion criteria. The median absolute error between the predicted and actual PT was 4.1° (interquartile range 2.0°–6.4°). The median absolute error between the predicted and actual SVA was 27 mm (interquartile range 11–47 mm). Forty-one of 54 patients with a formula that predicted a successful outcome had a successful outcome as shown by radiography (positive predictive value = 0.76). Forty-four of 45 patients with a formula that predicted an unsuccessful outcome had an unsuccessful outcome as shown by radiography (negative predictive value = 0.98).

Conclusions

The spinopelvic alignment formulas were accurate when predicting unsuccessful outcomes but less reliable when predicting successful outcomes. The preoperative surgical plan should be altered if an unsuccessful result is predicted. However, even after obtaining a predicted successful outcome, surgeons should ensure that the predicted values are not too close to unsuccessful values and should identify other variables that may affect alignment. In the near future, it is anticipated that the use of these formulas will lead to better surgical planning and improved outcomes for patients with complex ASD.

Restricted access

Justin S. Smith, Christopher I. Shaffrey, Virginie Lafage, Benjamin Blondel, Frank Schwab, Richard Hostin, Robert Hart, Brian O'Shaughnessy, Shay Bess, Serena S. Hu, Vedat Deviren, Christopher P. Ames and International Spine Study Group

Object

Sagittal spinopelvic malalignment is a significant cause of pain and disability in patients with adult spinal deformity. Surgical correction of spinopelvic malalignment can result in compensatory changes in spinal alignment outside of the fused spinal segments. These compensatory changes, termed reciprocal changes, have been defined for thoracic and lumbar regions but not for the cervical spine. The object of this study was to evaluate postoperative reciprocal changes within the cervical spine following lumbar pedicle subtraction osteotomy (PSO).

Methods

This was a multicenter retrospective radiographic analysis of patients from International Spine Study Group centers. Inclusion criteria were as follows: adults (>18 years old) with spinal deformity treated using lumbar PSO, a preoperative C7–S1 plumb line greater than 5 cm, and availability of pre- and postoperative full-length standing radiographs.

Results

Seventy-five patients (60 women, mean age 59 years) were included. The lumbar PSO significantly improved sagittal alignment, including the C7–S1 plumb line, C7–T12 inclination, and pelvic tilt (p <0.001). After lumbar PSO, reciprocal changes were seen to occur in C2–7 cervical lordosis (from 30.8° to 21.6°, p <0.001), C2–7 plumb line (from 27.0 mm to 22.9 mm), and T-1 slope (from −38.9° to −30.4°, p <0.001). Ideal correction of sagittal malalignment (postoperative sagittal vertical alignment < 50 mm) was associated with the greatest relaxation of cervical hyperlordosis (−12.4° vs −5.7°, p = 0.037). A change in cervical lordosis correlated with changes in T-1 slope (r = −0.621, p <0.001), C7–T12 inclination (r = 0.418, p <0.001), T12–S1 angle (r = −0.339, p = 0.005), and C7–S1 plumb line (r = 0.289, p = 0.018). Radiographic parameters that correlated with changes in cervical lordosis on multivariate linear regression analysis included change in T-1 slope and change in C2–7 plumb line (r2 = 0.53, p <0.001).

Conclusions

Adults with positive sagittal spinopelvic malalignment compensate with abnormally increased cervical lordosis in an effort to maintain horizontal gaze. Surgical correction of sagittal malalignment results in improvement of the abnormal cervical hyperlordosis through reciprocal changes.

Restricted access

Frank J. Schwab, Ashish Patel, Christopher I. Shaffrey, Justin S. Smith, Jean-Pierre Farcy, Oheneba Boachie-Adjei, Richard A. Hostin, Robert A. Hart, Behrooz A. Akbarnia, Douglas C. Burton, Shay Bess and Virginie Lafage

Object

Pedicle subtraction osteotomy (PSO) is a surgical procedure that is frequently performed on patients with sagittal spinopelvic malalignment. Although it allows for substantial spinopelvic realignment, suboptimal realignment outcomes have been reported in up to 33% of patients. The authors' objective in the present study was to identify differences in radiographic profiles and surgical procedures between patients achieving successful versus failed spinopelvic realignment following PSO.

Methods

This study is a multicenter retrospective consecutive PSO case series. The authors evaluated 99 cases involving patients who underwent PSO for sagittal spinopelvic malalignment. Because precise cutoffs of acceptable residual postoperative sagittal vertical axis (SVA) values have not been well defined, comparisons were focused between patient groups with a postoperative SVA that could be clearly considered either a success or a failure. Only cases in which the patients had a postoperative SVA of less than 50 mm (successful PSO realignment) or more than 100 mm (failed PSO realignment) were included in the analysis. Radiographic measures and PSO parameters were compared between successful and failed PSO realignments.

Results

Seventy-nine patients met the inclusion criteria. Successful realignment was achieved in 61 patients (77%), while realignment failed in 18 (23%). Patients with failed realignment had larger preoperative SVA (mean 217.9 vs 106.7 mm, p < 0.01), larger pelvic tilt (mean 36.9° vs 30.7°, p < 0.01), larger pelvic incidence (mean 64.2° vs 53.7°, p < 0.01), and greater lumbar lordosis–pelvic incidence mismatch (−47.1° vs −30.9°, p < 0.01) compared with those in whom realignment was successful. Failed and successful realignments were similar regarding the vertebral level of the PSO, the median size of wedge resection 22.0° (interquartile range 16.5°−28.5°), and the numerical changes in pre- and postoperative spinopelvic parameters (p > 0.05).

Conclusions

Patients with failed PSO realignments had significantly larger preoperative spinopelvic deformity than patients in whom realignment was successful. Despite their apparent need for greater correction, the patients in the failed realignment group only received the same amount of correction as those in the successfully realigned patients. A single-level standard PSO may not achieve optimal outcome in patients with high preoperative spinopelvic sagittal malalignment. Patients with large spinopelvic deformities should receive larger osteotomies or additional corrective procedures beyond PSOs to avoid undercorrection.

Free access

Kseniya Slobodyanyuk, Caroline E. Poorman, Justin S. Smith, Themistocles S. Protopsaltis, Richard Hostin, Shay Bess, Gregory M. Mundis Jr., Frank J. Schwab and Virginie Lafage

Object

The goal of this study was to determine the outcome and risk factors in patients with adult spinal deformity (ASD) who elected to receive nonoperative care.

Methods

In this retrospective study the authors reviewed a nonoperative branch of the International Spine Study Group database, derived from 10 sites across the US. Specific inclusion criteria included nonoperative treatment for ASD and the availability of Scoliosis Research Society (SRS)-22 scores and radiographic data at baseline (BL) and at 1-year (1Y) follow-up. Health-related quality of life measures were assessed using the SRS-22 and radiographic data. Changes in SRS-22 scores were evaluated by domain and expressed in number of minimum clinically important differences (MCIDs) gained or lost; BL and 1Y scores were also compared with age- and sex-matched normative references.

Results

One hundred eighty-nine patients (mean age 53 years, 86% female) met inclusion criteria. Pain was the domain with the largest offset for 43% of patients, followed by the Appearance (23%), Activity (18%), and Mental (15%) domains. On average, patients improved 0.3 MCID in Pain over 1Y, without changes in Activity or Appearance. Baseline scores significantly impacted 1Y outcomes, with up to 85% of patients in the mildest category of deformity being classified as < 1 MCID of normative reference at 1Y, versus 0% of patients with the most severe initial deformity. Baseline radiographic parameters did not correlate with outcome.

Conclusions

Patients who received nonoperative care are significantly more disabled than age- and sex-matched normative references. The likelihood for a patient to reach SRS scores similar to the normative reference at 1Y decreases with increased BL disability. Nonoperative treatment is a viable option for certain patients with ASD, and up to 24% of patients demonstrated significant improvement over 1Y with nonoperative care.

Free access

Christopher P. Ames, Justin S. Smith, Justin K. Scheer, Christopher I. Shaffrey, Virginie Lafage, Vedat Deviren, Bertrand Moal, Themistocles Protopsaltis, Praveen V. Mummaneni, Gregory M. Mundis Jr., Richard Hostin, Eric Klineberg, Douglas C. Burton, Robert Hart, Shay Bess, Frank J. Schwab and the International Spine Study Group

Object

Cervical spine osteotomies are powerful techniques to correct rigid cervical spine deformity. Many variations exist, however, and there is no current standardized system with which to describe and classify cervical osteotomies. This complicates the ability to compare outcomes across procedures and studies. The authors' objective was to establish a universal nomenclature for cervical spine osteotomies to provide a common language among spine surgeons.

Methods

A proposed nomenclature with 7 anatomical grades of increasing extent of bone/soft tissue resection and destabilization was designed. The highest grade of resection is termed the major osteotomy, and an approach modifier is used to denote the surgical approach(es), including anterior (A), posterior (P), anterior-posterior (AP), posterior-anterior (PA), anterior-posterior-anterior (APA), and posterior-anterior-posterior (PAP). For cases in which multiple grades of osteotomies were performed, the highest grade is termed the major osteotomy, and lower-grade osteotomies are termed minor osteotomies. The nomenclature was evaluated by 11 reviewers through 25 different radiographic clinical cases. The review was performed twice, separated by a minimum 1-week interval. Reliability was assessed using Fleiss kappa coefficients.

Results

The average intrarater reliability was classified as “almost perfect agreement” for the major osteotomy (0.89 [range 0.60–1.00]) and approach modifier (0.99 [0.95–1.00]); it was classified as “moderate agreement” for the minor osteotomy (0.73 [range 0.41–1.00]). The average interrater reliability for the 2 readings was the following: major osteotomy, 0.87 (“almost perfect agreement”); approach modifier, 0.99 (“almost perfect agreement”); and minor osteotomy, 0.55 (“moderate agreement”). Analysis of only major osteotomy plus approach modifier yielded a classification that was “almost perfect” with an average intrarater reliability of 0.90 (0.63–1.00) and an interrater reliability of 0.88 and 0.86 for the two reviews.

Conclusions

The proposed cervical spine osteotomy nomenclature provides the surgeon with a simple, standard description of the various cervical osteotomies. The reliability analysis demonstrated that this system is consistent and directly applicable. Future work will evaluate the relationship between this system and health-related quality of life metrics.

Full access

Joshua Bakhsheshian, Justin K. Scheer, Jeffrey L. Gum, Richard Hostin, Virginie Lafage, Shay Bess, Themistocles S. Protopsaltis, Douglas C. Burton, Malla Kate Keefe, Robert A. Hart, Gregory M. Mundis Jr., Christopher I. Shaffrey, Frank Schwab, Justin S. Smith, Christopher P. Ames and The International Spine Study Group

OBJECTIVE

Mental disease burden can have a significant impact on levels of disability and health-related quality of life (HRQOL) measures. Therefore, the authors investigated the significance of mental health status in adults with spinal deformity and poor physical function.

METHODS

A retrospective analysis of a prospective multicenter database of 365 adult spinal deformity (ASD) patients who had undergone surgical treatment was performed. Health-related QOL variables were examined preoperatively and at the 2-year postoperative follow-up. Patients were grouped by their 36-Item Short Form Health Survey mental component summary (MCS) and physical component summary (PCS) scores. Both groups had PCS scores ≤ 25th percentile for matched norms; however, the low mental health (LMH) group consisted of patients with an MCS score ≤ 25th percentile, and the high mental health (HMH) group included patients with an MCS score ≥ 75th percentile.

RESULTS

Of the 264 patients (72.3%) with a 2-year follow-up, 104 (28.5%) met the inclusion criteria for LMH and 40 patients (11.0%) met those for HMH. The LMH group had a significantly higher overall rate of comorbidities, specifically leg weakness, depression, hypertension, and self-reported neurological and psychiatric disease processes, and were more likely to be unemployed as compared with the HMH group (p < 0.05 for all). The 2 groups had similar 2-year postoperative improvements in HRQOL (p > 0.05) except for the greater improvements in the MCS and the Scoliosis Research Society-22r questionnaire (SRS-22r) mental domain (p < 0.05) in the LMH group and greater improvements in PCS and SRS-22r satisfaction and back pain domains (p < 0.05) in the HMH group. The LMH group had a higher rate of reaching a minimal clinically important difference (MCID) on the SRS-22r mental domain (p < 0.01), and the HMH group had a higher rate of reaching an MCID on the PCS and SRS-22r activity domain (p < 0.05). On multivariable logistic regression, having LMH was a significant independent predictor of failure to reach an MCID on the PCS (p < 0.05). At the 2-year postoperative follow-up, 14 LMH patients (15.1%) were categorized as HMH. Two LMH patients (2.2%), and 3 HMH patients (7.7%) transitioned to a PCS score ≥ 75th percentile for age- and sex-matched US norms (p < 0.01).

CONCLUSIONS

While patients with poor mental and physical health, according to their MCS and PCS scores, have higher medical comorbidity and unemployment rates, they still demonstrate significant improvements in HRQOL measurements postoperatively. Both LMH and HMH patient groups demonstrated similar improvements in most HRQOL domains, except that the LMH patients had difficulties in obtaining improvements in the PCS domain.

Full access

Renaud Lafage, Ibrahim Obeid, Barthelemy Liabaud, Shay Bess, Douglas Burton, Justin S. Smith, Cyrus Jalai, Richard Hostin, Christopher I. Shaffrey, Christopher Ames, Han Jo Kim, Eric Klineberg, Frank Schwab, Virginie Lafage and the International Spine Study Group

OBJECTIVE

The surgical correction of adult spinal deformity (ASD) often involves modifying lumbar lordosis (LL) to restore ideal sagittal alignment. However, corrections that include large changes in LL increase the risk for development of proximal junctional kyphosis (PJK). Little is known about the impact of cranial versus caudal correction in the lumbar spine on the occurrence of PJK. The goal of this study was to investigate the impact of the location of the correction on acute PJK development.

METHODS

This study was a retrospective review of a prospective multicenter database. Surgically treated ASD patients with early follow-up evaluations (6 weeks) and fusions of the full lumbosacral spine were included. Radiographic parameters analyzed included the classic spinopelvic parameters (pelvic incidence [PI], pelvic tilt [PT], PI−LL, and sagittal vertical axis [SVA]) and segmental correction. Using Glattes’ criteria, patients were stratified into PJK and noPJK groups and propensity matched by age and regional lumbar correction (ΔPI−LL). Radiographic parameters and segmental correction were compared between PJK and noPJK patients using independent t-tests.

RESULTS

After propensity matching, 312 of 483 patients were included in the analysis (mean age 64 years, 76% women, 40% with PJK). There were no significant differences between PJK and noPJK patients at baseline or postoperatively, or between changes in alignment, with the exception of thoracic kyphosis (TK) and ΔTK. PJK patients had a decrease in segmental lordosis at L4-L5-S1 (−0.6° vs 1.6°, p = 0.025), and larger increases in segmental correction at cranial levels L1-L2-L3 (9.9° vs 7.1°), T12-L1-L2 (7.3° vs 5.4°), and T11-T12-L1 (2.9° vs 0.7°) (all p < 0.05).

CONCLUSIONS

Although achievement of an optimal sagittal alignment is the goal of realignment surgery, dramatic lumbar corrections appear to increase the risk of PJK. This study was the first to demonstrate that patients who developed PJK underwent kyphotic changes in the L4–S1 segments while restoring LL at more cranial levels (T12–L3). These findings suggest that restoring lordosis at lower lumbar levels may result in a decreased risk of developing PJK.

Full access

Blake N. Staub, Renaud Lafage, Han Jo Kim, Christopher I. Shaffrey, Gregory M. Mundis Jr., Richard Hostin, Douglas Burton, Lawrence Lenke, Munish C. Gupta, Christopher Ames, Eric Klineberg, Shay Bess, Frank Schwab, Virginie Lafage and the International Spine Study Group

OBJECTIVE

Numerous studies have attempted to delineate the normative value for T1S−CL (T1 slope minus cervical lordosis) as a marker for both cervical deformity and a goal for correction similar to how PI-LL (pelvic incidence–lumbar lordosis) mismatch informs decision making in thoracolumbar adult spinal deformity (ASD). The goal of this study was to define the relationship between T1 slope (T1S) and cervical lordosis (CL).

METHODS

This is a retrospective review of a prospective database. Surgical ASD cases were initially analyzed. Analysis across the sagittal parameters was performed. Linear regression analysis based on T1S was used to provide a clinically applicable equation to predict CL. Findings were validated using the postoperative alignment of the ASD patients. Further validation was then performed using a second, normative database. The range of normal alignment associated with horizontal gaze was derived from a multilinear regression on data from asymptomatic patients.

RESULTS

A total of 103 patients (mean age 54.7 years) were included. Analysis revealed a strong correlation between T1S and C0–7 lordosis (r = 0.886), C2–7 lordosis (r = 0.815), and C0–2 lordosis (r = 0.732). There was no significant correlation between T1S and T1S−CL. Linear regression analysis revealed that T1S−CL assumed a constant value of 16.5° (R2 = 0.664, standard error 2°). These findings were validated on the postoperative imaging (mean absolute error [MAE] 5.9°). The equation was then applied to the normative database (MAE 6.7° controlling for McGregor slope [MGS] between −5° and 15°). A multilinear regression between C2–7, T1S, and MGS demonstrated a range of T1S−CL between 14.5° and 26.5° was necessary to maintain horizontal gaze.

CONCLUSIONS

Normative CL can be predicted via the formula CL = T1S − 16.5° ± 2°. This implies a threshold of deformity and aids in providing a goal for surgical correction. Just as pelvic incidence (PI) can be used to determine the ideal LL, T1S can be used to predict ideal CL. This formula also implies that a kyphotic cervical alignment is to be expected for individuals with a T1S < 16.5°.

Free access

Taemin Oh, Justin K. Scheer, Justin S. Smith, Richard Hostin, Chessie Robinson, Jeffrey L. Gum, Frank Schwab, Robert A. Hart, Virginie Lafage, Douglas C. Burton, Shay Bess, Themistocles Protopsaltis, Eric O. Klineberg, Christopher I. Shaffrey, Christopher P. Ames and the International Spine Study Group

OBJECTIVE

Patients with adult spinal deformity (ASD) experience significant quality of life improvements after surgery. Treatment, however, is expensive and complication rates are high. Predictive analytics has the potential to use many variables to make accurate predictions in large data sets. A validated minimum clinically important difference (MCID) model has the potential to assist in patient selection, thereby improving outcomes and, potentially, cost-effectiveness.

METHODS

The present study was a retrospective analysis of a multiinstitutional database of patients with ASD. Inclusion criteria were as follows: age ≥ 18 years, radiographic evidence of ASD, 2-year follow-up, and preoperative Oswestry Disability Index (ODI) > 15. Forty-six variables were used for model training: demographic data, radiographic parameters, surgical variables, and results on the health-related quality of life questionnaire. Patients were grouped as reaching a 2-year ODI MCID (+MCID) or not (−MCID). An ensemble of 5 different bootstrapped decision trees was constructed using the C5.0 algorithm. Internal validation was performed via 70:30 data split for training/testing. Model accuracy and area under the curve (AUC) were calculated. The mean quality-adjusted life years (QALYs) and QALYs gained at 2 years were calculated and discounted at 3.5% per year. The QALYs were compared between patients in the +MCID and –MCID groups.

RESULTS

A total of 234 patients met inclusion criteria (+MCID 129, −MCID 105). Sixty-nine patients (29.5%) were included for model testing. Predicted versus actual results were 50 versus 40 for +MCID and 19 versus 29 for −MCID (i.e., 10 patients were misclassified). Model accuracy was 85.5%, with 0.96 AUC. Predicted results showed that patients in the +MCID group had significantly greater 2-year mean QALYs (p = 0.0057) and QALYs gained (p = 0.0002).

CONCLUSIONS

A successful model with 85.5% accuracy and 0.96 AUC was constructed to predict which patients would reach ODI MCID. The patients in the +MCID group had significantly higher mean 2-year QALYs and QALYs gained. This study provides proof of concept for using predictive modeling techniques to optimize patient selection in complex spine surgery.