Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Richard C. Burgess x
Clear All Modify Search
Free access

Sumeet Vadera, Lara Jehi, Richard C. Burgess, Katherine Shea, Andreas V. Alexopoulos, John Mosher, Jorge Gonzalez-Martinez and William Bingaman


During the presurgical evaluation of patients with medically intractable focal epilepsy, a variety of noninvasive studies are performed to localize the hypothetical epileptogenic zone and guide the resection. Magnetoencephalography (MEG) is becoming increasingly used in the clinical realm for this purpose. No investigators have previously reported on coregisteration of MEG clusters with postoperative resection cavities to evaluate whether complete “clusterectomy” (resection of the area associated with MEG clusters) was performed or to compare these findings with postoperative seizure-free outcomes.


The authors retrospectively reviewed the charts and imaging studies of 65 patients undergoing MEG followed by resective epilepsy surgery from 2009 until 2012 at the Cleveland Clinic. Preoperative MEG studies were fused with postoperative MRI studies to evaluate whether clusters were within the resected area. These data were then correlated with postoperative seizure freedom.


Sixty-five patients were included in this study. The average duration of follow-up was 13.9 months, the mean age at surgery was 23.1 years, and the mean duration of epilepsy was 13.7 years. In 30 patients, the main cluster was located completely within the resection cavity, in 28 it was completely outside the resection cavity, and in 7 it was partially within the resection cavity. Seventy-four percent of patients were seizure free at 12 months after surgery, and this rate decreased to 60% at 24 months. Improved likelihood of seizure freedom was seen with complete clusterectomy in patients with localization outside the temporal lobe (extra–temporal lobe epilepsy) (p = 0.04).


In patients with preoperative MEG studies that show clusters in surgically accessible areas outside the temporal lobe, we suggest aggressive resection to improve the chances for seizure freedom. When the cluster is found within the temporal lobe, further diagnostic testing may be required to better localize the epileptogenic zone.

Full access

Rei Enatsu, Jorge Gonzalez-Martinez, Juan Bulacio, John C. Mosher, Richard C. Burgess, Imad Najm and Dileep R. Nair


The frontal and insular fiber network in humans remains largely unknown. This study investigated the connectivity of the frontal and anterior insular network in humans using cortico-cortical evoked potential (CCEP).


This retrospective analysis included 18 patients with medically intractable focal epilepsy who underwent stereoelectroencephalography and CCEP. Alternating 1-Hz electrical stimuli were delivered to parts of the frontal lobe and anterior insula (prefrontal cortex [PFC], ventrolateral and dorsolateral premotor area [vPM and dPM, respectively], presupplementary motor area [pre-SMA], SMA, frontal operculum, and anterior insula). A total of 40–60 stimuli were averaged in each trial to obtain CCEP responses. The distribution of CCEP was evaluated by calculating the root mean square of CCEP responses.


Stimulation of the PFC elicited prominent CCEP responses in the medial PFC and PMs over the ipsilateral hemisphere. Stimulation of the vPM and dPM induced CCEP responses in the ipsilateral frontoparietal areas. Stimulation of the pre-SMA induced CCEP responses in the ipsilateral medial and lateral frontal areas and contralateral pre-SMA, whereas stimulation of the SMA induced CCEP responses in the bilateral frontoparietal areas. Stimulation of the frontal operculum induced CCEP responses in the ipsilateral insula and temporal operculum. CCEPs were observed in the ipsilateral medial, lateral frontal, and frontotemporal operculum in the anterior insular stimulation. Stimulation of the vPM and SMA led to the network in the dominant hemisphere being more developed.


Various regions within the frontal lobe and anterior insula were linked to specific ipsilateral and contralateral regions, which may reflect distinct functional roles.

Restricted access

Shan Wang, Yingying Tang, Thandar Aung, Cong Chen, Masaya Katagiri, Stephen E. Jones, Richard A. Prayson, Balu Krishnan, Jorge A. Gonzalez-Martinez, Richard C. Burgess, Imad M. Najm, Andreas V. Alexopoulos, Shuang Wang, Meiping Ding and Zhong Irene Wang


Presurgical evaluation of patients with operculoinsular epilepsy and negative MRI presents major challenges. Here the authors examined the yield of noninvasive modalities such as voxel-based morphometric MRI postprocessing, FDG-PET, subtraction ictal SPECT coregistered to MRI (SISCOM), and magnetoencephalography (MEG) in a cohort of patients with operculoinsular epilepsy and negative MRI.


Twenty-two MRI-negative patients were included who had focal ictal onset from the operculoinsular cortex on intracranial EEG, and underwent focal resection limited to the operculoinsular cortex. MRI postprocessing was applied to presurgical T1-weighted volumetric MRI using a morphometric analysis program (MAP). Individual and combined localization yields of MAP, FDG-PET, MEG, and SISCOM were compared with the ictal onset location on intracranial EEG. Seizure outcomes were reported at 1 year and 2 years (when available) using the Engel classification.


Ten patients (45.5%, 10/22) had operculoinsular abnormalities on MAP; 5 (23.8%, 5/21) had operculoinsular hypometabolism on FDG-PET; 4 (26.7%, 4/15) had operculoinsular hyperperfusion on SISCOM; and 6 (30.0%, 6/20) had an MEG cluster (3 tight, 3 loose) within the operculoinsular cortex. The highest yield of a 2-test combination was 59.1%, seen with MAP and SISCOM, followed by 54.5% with MAP and FDG-PET, and also 54.5% with MAP and MEG. The highest yield of a 3-test combination was 68.2%, seen with MAP, MEG, and SISCOM. The yield of the 4-test combination remained at 68.2%. When all other tests were negative or nonlocalizing, unique information was provided by MAP in 5, MEG in 1, SISCOM in 2, and FDG-PET in none of the patients. One-year follow-up was available in all patients, and showed 11 Engel class IA, 4 class IB, 4 class II, and 3 class III/IV. Two-year follow-up was available in 19 patients, and showed 9 class IA, 3 class IB, 1 class ID, 3 class II, and 3 class III/IV.


This study highlights the individual and combined values of multiple noninvasive modalities for the evaluation of nonlesional operculoinsular epilepsy. The 3-test combination of MAP, MEG, and SISCOM represented structural, interictal, and ictal localization information, and constituted the highest yield. MAP showed the highest yield of unique information when other tests were negative or nonlocalizing.