Search Results

You are looking at 1 - 10 of 19 items for

  • Author or Editor: Ramesh Grandhi x
  • Refine by Access: all x
Clear All Modify Search
Free access

Bornali Kundu, John D. Rolston, and Ramesh Grandhi

The sodium amytal test, or Wada test, named after Juhn Wada, has remained a pillar of presurgical planning and is used to identify the laterality of the dominant language and memory areas in the brain. What is perhaps less well known is that the original intent of the test was to abort seizure activity from an affected hemisphere and also to protect that hemisphere from the effects of electroconvulsive treatment. Some 80 years after Paul Broca described the frontal operculum as an essential area of expressive language and well before the age of MRI, Wada used the test to determine language dominance. The test was later adopted to study hemispheric memory dominance but was met with less consistent success because of the vascular anatomy of the mesial temporal structures. With the advent of functional MRI, the use of the Wada test has narrowed to application in select patients. The concept of selectively inhibiting part of the brain to determine its function, however, remains crucial to understanding brain function. In this review, the authors discuss the rise and fall of the Wada test, an important historical example of the innovation of clinicians in neuroscience.

Free access

Mariam Ishaque, David J. Wallace, and Ramesh Grandhi

Throughout history, neurosurgical procedures have been fundamental in advancing neuroscience; however, this has not always been without deleterious side effects or harmful consequences. While critical to the progression of clinical neuroscience during the early 20th century, yet, at the same time, poorly tolerated by patients, pneumoencephalography is one such procedure that exemplifies this juxtaposition. Presented herein are historical perspectives and reflections on the role of the pneumoencephalography in the diagnosis and treatment of neuropsychiatric illnesses.

Free access

Geoffrey W. Peitz, Christopher A. Sy, and Ramesh Grandhi

Blister aneurysms are rare cerebrovascular lesions for which the treatment methods are reviewed here, with a focus on endovascular options. The reported pathogenesis of blister aneurysms varies, and hemodynamic stress, arterial dissection, and arteriosclerotic ulceration have all been described. There is consensus on the excessive fragility of blister aneurysms and their parent vessels, which makes clipping technically difficult. Open surgical treatment is associated with high rates of complications, morbidity, and mortality; endovascular treatment is a promising alternative. Among endovascular treatment options, deconstructive treatment has been associated with higher morbidity compared with reconstructive methods such as direct embolization, stent- or balloon-assisted direct embolization, stent monotherapy, and flow diversion. Flow diversion has been associated with higher technical success rates and similar clinical outcomes compared with non–flow diverting treatment methods. However, delayed aneurysm occlusion and the need for antiplatelet therapy are potential drawbacks to flow diversion that must be considered when choosing among treatment methods for blister aneurysms.

Open access

Evan Joyce, Ramesh Grandhi, and William T. Couldwell

Arteriovenous malformations (AVMs) of the posterior fossa represent just 5%–15% of all intracranial AVMs. Rupture often leads to devastating brainstem compression, with mortality reported as high as 67%. A life-saving decompressive craniectomy with or without hematoma evacuation may be necessary in the acute setting to alleviate mass effect before proceeding with definitive treatment of the vascular pathology. Here, the authors demonstrate the utility of using a generously sized temporizing decompressive suboccipital craniectomy to subsequently allow for a more judicious resection of a Spetzler-Martin grade III AVM fed by the right superior cerebellar artery using a sitting supracerebellar infratentorial approach.

The video can be found here:

Free access

Srinivas Chivukula, Ramesh Grandhi, and Robert M. Friedlander

Two key discoveries in the 19th century—infection control and the development of general anesthesia—provided an impetus for the rapid advancement of surgery, especially within the field of neurosurgery. Improvements in anesthesia and perioperative care, in particular, fostered the development of meticulous surgical technique conducive to the refinement of neuroanatomical understanding and optimization of neurosurgical procedures and outcomes. Yet, even dating back to the earliest times, some form of anesthesia or perioperative pain management was used during neurosurgical procedures. Despite a few reports on anesthesia published around the time of William Morton's now-famous public demonstration of ether anesthesia in 1846, relatively little is known or written of early anesthetics in neurosurgery. In the present article the authors discuss the history of anesthesia pertaining to neurosurgical procedures and draw parallels between the refinements and developments in anesthesia care over time with some of the concomitant advances in neurosurgery.

Free access

Silvia Gesheva, William T. Couldwell, Vance Mortimer, Philipp Taussky, and Ramesh Grandhi

Dural arteriovenous fistulae (dAVFs) are vascular anomalies formed by abnormal connections between branches of dural arteries and dural veins or dural venous sinus(es). These pathologic shunts constitute 10%–15% of all intracranial arteriovenous malformations. The hallmark of malignant dAVFs is the presence of cortical venous drainage, a finding that increases the likelihood of nonhemorrhagic neurologic deficit, intracranial hemorrhage, and mortality if left unaddressed. Endovascular approaches have become the primary modality for the treatment of dAVFs. The authors present a case of staged endovascular transarterial embolization of a malignant dAVF running parallel to the left transverse sinus in a patient with headaches and pulsatile tinnitus. The fistula was completely treated using Onyx and n-butyl cyanoacrylate.

The video can be found here:

Restricted access

Sandi Lam, Ramesh Grandhi, and Stephanie Greene

Meconium staining of open myelomeningoceles has been reported to occur both prenatally and postnatally, but meconium staining of the brainstem has not been previously documented. The authors present a case of meconium staining of the brainstem in an infant with a meconium-stained myelomeningocele, Chiari malformation Type II, and hydrocephalus and discuss possible implications for prenatal and perinatal care.

Free access

Samon Tavakoli, Geoffrey Peitz, William Ares, Shaheryar Hafeez, and Ramesh Grandhi

Intracranial pressure monitoring devices have become the standard of care for the management of patients with pathologies associated with intracranial hypertension. Given the importance of invasive intracranial monitoring devices in the modern neurointensive care setting, gaining a thorough understanding of the potential complications related to device placement—and misplacement—is crucial. The increased prevalence of intracranial pressure monitoring as a management tool for neurosurgical patients has led to the publication of a plethora of papers regarding their indications and complications. The authors aim to provide a concise review of key contemporary articles in the literature concerning important complications with the hope of elucidating practices that improve outcomes for neurocritically ill patients.

Free access

William J. Ares, Brian T. Jankowitz, Daniel A. Tonetti, Bradley A. Gross, and Ramesh Grandhi


Penetrating cerebrovascular injury (PCVI) is a subset of traumatic brain injury (TBI) comprising a broad spectrum of cerebrovascular pathology, including traumatic pseudoaneurysms, direct arterial injury, venous sinus stenosis or occlusion, and traumatic dural arteriovenous fistulas. These can result in immediate or delayed vascular injury and consequent neurological morbidity. Current TBI guidelines recommend cerebrovascular imaging for detection, but there is no consensus on the optimum modality. The aim of this retrospective cohort study was to compare CT angiography (CTA) and digital subtraction angiography (DSA) for the diagnosis of PCVI.


The records of all patients presenting to two level I trauma centers in the United States between January 2010 and July 2016 with penetrating head or neck trauma were reviewed. Only those who had undergone both CTA and DSA were included. Clinical and neuroimaging data were collected, and PCVIs were stratified using a modified Biffl grading scheme. DSA and CTA results were then compared.


Of 312 patients with penetrating trauma over the study period, 56 patients (91% male, mean age 32 years) with PCVI met inclusion criteria and constituted the study cohort. The mechanism of injury was a gunshot wound in 86% (48/56) of patients. Twenty-four (43%) patients had sustained an angiographically confirmed arterial or venous injury. Compared with DSA as the gold standard, CTA had a sensitivity and specificity of 72% and 63%, respectively, for identifying PCVI. CTA had a positive predictive value of 61% and negative predictive value of 70%. Seven patients (13%) required immediate endovascular treatment of PCVI; in 3 (43%) of these patients, the injury was not identified on CTA. Twenty-two patients (39%) underwent delayed DSA an average of 25 days after injury; 2 (9%) of these patients were found to harbor new pathological conditions requiring treatment.


In this retrospective analysis of PCVI at two large trauma centers, CTA demonstrated low sensitivity, specificity, and positive and negative predictive values for the diagnosis of PCVI. These findings suggest that DSA provides better accuracy than CTA in the diagnosis of both immediate and delayed PCVI and should be considered for patients experiencing penetrating head or neck trauma.