Search Results

You are looking at 1 - 10 of 74 items for

  • Author or Editor: Ralph G. Dacey Jr. x
  • Refine by Access: all x
Clear All Modify Search
Free access

Obituary: John Anthony Jane Sr., MD, PhD, 1931–2015

Ralph G. Dacey Jr.

Full access

Developmental stages in the career of an academic neurosurgeon

Ralph G. Dacey Jr.

Restricted access

Reverberation index: a novel metric by which to quantify the impact of a scientific entity on a given field

S. Kathleen Bandt and Ralph G. Dacey Jr.

The authors propose a novel bibilometric index, the reverberation index (r-index), as a comparative assessment tool for use in determining differential reverberation between scientific fields for a given scientific entity. Conversely, this may allow comparison of 2 similar scientific entities within a single scientific field. This index is calculated using a relatively simple 3-step process.

Briefly, Thompson Reuters' Web of Science is used to produce a citation report for a unique search parameter (this may be an author, journal article, or topical key word). From this citation report, a list of citing journals is retrieved from which a weighted ratio of citation patterns across journals can be calculated. This r-index is then used to compare the reverberation of the original search parameter across different fields of study or wherever a comparison is required.

The advantage of this novel tool is its ability to transcend a specific component of the scientific process. This affords application to a diverse range of entities, including an author, a journal article, or a topical key word, for effective comparison of that entity's reverberation within a scientific arena. The authors introduce the context for and applications of the r-index, emphasizing neurosurgical topics and journals for illustration purposes. It should be kept in mind, however, that the r-index is readily applicable across all fields of study.

Restricted access

Spontaneous tone of cerebral parenchymal arterioles: a role in cerebral hyperemic phenomena

Masakazu Takayasu and Ralph G. Dacey Jr.

✓ An isolated cerebral arteriole preparation was used to test the hypothesis that a temporary reduction in transmural pressure causes a subsequent vasodilation mediated by mechanisms intrinsic to the vessel wall. Thirty-five cerebral vessels of 44.7 ± 1.4 µm (± standard error of the mean) mean diameter were cannulated in vitro and pressurized at a transmural pressure of 60 mm Hg; after an equilibration period the vessels developed spontaneous tone. When transmural pressure was decreased to 0 mm Hg for a period of 4 minutes then returned to 60 mm Hg, vessels dilated to 155.1% ± 6.8% of control diameter before gradually redeveloping spontaneous tone in 5.5 ± 0.7 minutes. Varying the duration of the period during which transmural pressure was at 0 mm Hg had no significant effect on the degree of vasodilation. Conversely, varying the level of decreased transmural pressure between 0 and 20 mm Hg significantly affected both the magnitude of vasodilation and the time course of spontaneous tone recovery. These findings indicate that a temporary period of decreased transmural pressure may result in a loss of spontaneous tone in the resistance vessels of the cerebral microcirculation. Mechanisms intrinsic to the vessel wall may play a significant role in the early stage of post-reperfusion hyperemia. Such mechanisms could also be implicated in other hyperemic phenomena affecting the cerebral circulation, such as the rapid increase in intracranial pressure after subarachnoid hemorrhage, the development of the normal perfusion pressure breakthrough phenomenon, and the initiation of intracranial pressure plateau waves.

Restricted access

An in vitro comparative study of conducting vessels and penetrating arterioles after experimental subarachnoid hemorrhage in the rabbit

Dennis G. Vollmer, Masakazu Takayasu, and Ralph G. Dacey Jr.

✓ The reactivity of rabbit basilar artery and penetrating arteriolar microvessels was studied in vitro using an isometric-tension measurement technique and an isolated perfused arteriole preparation, respectively. Comparisons were made between reactivities of normal vessels and those obtained from animals subjected to experimental subarachnoid hemorrhage (SAH) 3 days prior to examination. Subarachnoid hemorrhage produced significant increases in basilar artery contraction in response to increasing concentrations of serotonin (5-hydroxytryptamine) (10−9 to 10−5 M) and prostaglandin F (10−9 to 10−5 M) when compared to normal arteries. In addition, SAH attenuated the relaxing effect of acetylcholine following serotonin-induced contraction and of adenosine triphosphate after KCl-induced basilar artery contractions. In contrast to the changes observed in large arteries, cerebral microvessels did not demonstrate significant differences in spontaneous tone or in reactivity to a number of vasoactive stimuli including application of calcium, serotonin, and acetylcholine. On the other hand, small but significant changes in arteriolar responsiveness to changes in extraluminal pH and to application of KCl were noted.

Findings from this study suggest that intracerebral resistance vessels of the cerebral microcirculation are not greatly affected by the presence of subarachnoid clot, in contrast to the large arteries in the basal subarachnoid space. The small changes that do occur are qualitatively different from those observed for large arteries. These findings are consistent with the observation of significant therapeutic benefit with the use of calcium channel blockers without changes in angiographically visible vasospasm in large vessels. It is likely, therefore, that calcium antagonists may act to decrease total cerebrovascular resistance at the level of the relatively unaffected microcirculation after SAH without changing large vessel diameter.

Restricted access

Effects of oxyhemoglobin on local and propagated vasodilatory responses induced by adenosine, adenosine diphosphate, and adenosine triphosphate in rat cerebral arterioles

Yasukazu Kajita, Hans H. Dietrich, and Ralph G. Dacey Jr.

✓ After subarachnoid hemorrhage (SAH), cerebral arteries display impaired vasomotor control, resulting in decreased regional cerebral blood flow. Recently, propagation of vasomotor responses has been recognized as an important regulatory mechanism in microcirculation. In this study, the authors tested the hypothesis that oxyhemoglobin (OxyHb) inhibits the vasodilatory effect of chemical mediators such as adenosine and adenine nucleotides at a local and/or propagated site.

Penetrating intracerebral arterioles were surgically isolated from the middle cerebral arteries of rat brains, cannulated, and observed videomicroscopically in an organ bath under an inverted microscope. The effects of 10−5 M OxyHb on vasoactive responses to adenosine, adenosine diphosphate (ADP), and adenosine triphosphate (ATP) were examined. The drugs were extraluminally applied either to the bath (10−10−10−3 M) or, using pressure microejection (pipette concentration 10−2 M), locally.

The ATP and ADP initially constricted and then significantly dilated the vessels after both extraluminal application and microapplication. Furthermore, local microstimulation by these drugs produced conducted vasodilation. Adenosine elicited significant vasodilation after both extraluminal and local stimulation. Again, conducted vasodilation was observed. The vasomotor responses that were induced by a maximum local stimulation corresponded in magnitude to those observed at bath concentrations of 10−5 to 10−4 M of the same drug.

Pretreatment with OxyHb constricted arterioles to an average of 87% of control and blunted extraluminally induced dilation at low concentrations (10−10−10−8) of ATP and ADP, but did not affect vasodilation induced by 10−4 M or greater concentrations of ATP, ADP, or adenosine. Although the local response to local microstimulation was unaltered, propagated vasodilation as a response to ATP, ADP, and adenosine was significantly attenuated by OxyHb.

These findings indicate that vasodilatory propagation plays an important role in the regulation of brain microcirculation and that its impairment by OxyHb could, in part, explain the cerebral hypoperfusion that is observed after SAH.

Restricted access

Effects of hypothermia and hyperthermia on the reactivity of rat intracerebral arterioles in vitro

Koichiro Ogura, Masakazu Takayasu, and Ralph G. Dacey Jr

✓ The effects of hypothermia and hyperthermia on the cerebral microcirculation were studied using isolated perfused intracerebral (parenchymal) arterioles obtained from rats. In a temperature-dependent manner, hypothermia (20.0° to 35.0°C) dilated the spontaneous tone developed by the arterioles and also diminished their contractile response to potassium and prostaglandin F. In contrast, hyperthermia (40.0° to 45.0°C) induced a biphasic response consisting of initial vasoconstriction and secondary vasodilation. Exposure of the vessels to 45.0°C for 30 minutes irreversibly abolished the spontaneous tone and responsiveness of the arterioles when the temperature of the preparation was returned to 37.5°C. In calcium-free solutions, however, the arteriolar diameter was not affected within a temperature range of 20.0° to 45°C. Furthermore, arterioles that had been in a calcium-free solution during exposure to 45°C temperature recovered their viability at 37.5°C. These results suggest that changes in ambient temperature alter calcium-induced contraction in arteriolar smooth muscle, and that the irreversible effects of hyperthermia on the arterioles are dependent upon extracellular calcium. These studies indicate that alterations in brain temperature may affect the pathogenesis of cerebral ischemia by mechanisms that are in part independent of parenchymal metabolism.

Restricted access

Regulation of neurosurgical innovation

Ralph G. Dacey Jr.

Restricted access

Effects of extravascular acidification and extravascular alkalinization on constriction and depolarization in rat cerebral arterioles in vitro

Hans H. Dietrich and Ralph G. Dacey Jr.

✓ The relationship between cell membrane potential, vessel diameter, and pH in small cerebral arterioles is not completely understood. This study involved direct, simultaneous measurement of cell membrane potential and vessel diameter at various extracellular pH levels. Arterioles ranging from 44 to 91 µm in diameter were isolated, transferred to a temperature-controlled microscope chamber, which was used as an organ bath, and observed through an inverted videomicroscope. Two vessel cannulation procedures were used: a single-sided cannulation with the other side occluded, and a double-sided and perfused cannulation. After cannulation, the vessels were pressurized to 60 mm Hg intraluminally and the bath temperature was raised to 37°C. Cell membrane potentials of vessel wall cells were obtained after the bath temperature reached 37°C with the vessels partly constricted and again after spontaneous tone (constriction) of the healthy vessels had developed.

The effect of extraluminal pH on cell membrane potentials was studied by changing the bath pH from 7.3 to either 7.65 or 6.8 in the single-sided cannulation. The average cell membrane potential for vessels at 37°C, with 60 mm Hg of intraluminal pressure and pH 7.3, was −37.5 mV. The cell membrane potential depolarized to −30.9 mV at pH 7.65 and hyperpolarized to −58.4 mV at pH 6.8, with a slope of 25.8 mV/pH unit. The effect of depolarizing extracellular potassium ions on the cell membrane potential was examined by perfusing two vessels with modified Ringer's solution containing 70 mM KCl. This perfusion method decreased the vessel diameter by 48% and depolarized the observed cell membrane potential from −41.9 to −19.8 mV, with a slope of −0.42 mV per percentage diameter change.

These data provide the first measurements of membrane potentials of isolated penetrating arteriole wall cells in vitro. The results indicate that the cell membrane potential relates linearly to the vessel diameter. This new technique opens the possibility for studying vessel response to stimuli under controlled conditions and regulatory mechanisms such as the propagation of vasomotor responses.

Restricted access

Enlargement of an intracranial aneurysm in the eighth decade of life

Case report

Ralph G. Dacey Jr., David Pitkethly, and H. Richard Winn

✓ The management of intracranial aneurysms in elderly patients remains controversial, since the natural history of these lesions is not well understood. The authors describe the case of a 76-year-old woman with documented enlargement of an internal carotid artery aneurysm over 3 years. The management of intracranial aneurysms in elderly patients is discussed.