Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Rajan P. Patel x
Clear All Modify Search
Restricted access

Grant M. Fischer, Elmira Vaziri Fard, Manish N. Shah, Rajan P. Patel, Gretchen Von Allmen, Leomar Y. Ballester and Meenakshi B. Bhattacharjee

Although rare, hyaline cytoplasmic inclusions isolated to astrocytes of the cerebral cortex have been identified in a spectrum of diseases ranging from intractable epilepsy in pediatric patients with only mild to moderate developmental delays to Aicardi syndrome. These inclusions classically stain positive for filamin A, giving rise to the term “filaminopathies.” The authors report on 2 pediatric patients with intractable epilepsy and developmental delay who uniquely displayed filamin A–negative hyaline astrocytic inclusions in resected brain tissues. Additionally, these inclusions stained positive for S100 and negative for glial fibrillary acidic protein, chromogranin, neurofilament, CD34, vimentin, periodic acid–Schiff (PAS), and Alcian blue. These are the first reported cases of filamin A–negative hyaline astrocytic inclusions, providing a novel variation on a previously reported entity and justification to further investigate the pathogenesis of these inclusions. The authors compare their findings with previously reported cases and review the literature on hyaline astrocytic inclusions in intractable pediatric epilepsy.

Full access

Joseph P. Herbert, Sidish S. Venkataraman, Ali H. Turkmani, Liang Zhu, Marcia L. Kerr, Rajan P. Patel, Irma T. Ugalde, Stephen A. Fletcher, David I. Sandberg, Charles S. Cox Jr., Ryan S. Kitagawa, Arthur L. Day and Manish N. Shah


The objective of this study was to assess the incidence, diagnosis, and treatment of pediatric blunt cerebrovascular injury (BCVI) at a busy Level 1 trauma center and to develop a tool for accurately predicting pediatric BCVI and the need for diagnostic testing.


This is a retrospective cohort study of a prospectively collected database of pediatric patients who had sustained blunt trauma (patient age range 0–15 years) and were treated at a Level 1 trauma center between 2005 and 2015. Digital subtraction angiography, MR angiography, or CT angiography was used to confirm BCVI. Recently, the Utah score has emerged as a screening tool specifically targeted toward evaluating BCVI risk in the pediatric population. Using logistical regression and adding mechanism of injury as a logit, the McGovern score was able to use the Utah score as a starting point to create a more sensitive screening tool to identify which pediatric trauma patients should receive angiographic imaging due to a high risk for BCVI.


A total of 12,614 patients (mean age 6.6 years) were admitted with blunt trauma and prospectively registered in the trauma database. Of these, 460 (3.6%) patients underwent angiography after blunt trauma: 295 (64.1%), 107 (23.3%), 6 (1.3%), and 52 (11.3%) patients underwent CT angiography, MR angiography, digital subtraction angiography, and a combination of imaging modalities, respectively. The BCVI incidence (n = 21; 0.17%) was lower than that in a comparable adult group (p < 0.05). The mean patient was age 10.4 years with a mean follow-up of 7.5 months. Eleven patients (52.4%) were involved in a motor vehicle collision, with a mean Glasgow Coma Scale score of 8.6. There were 8 patients (38.1%) with carotid canal fracture, 6 patients (28.6%) with petrous bone fracture, and 2 patients (9.5%) with infarction on initial presentation. Eight patients (38.1%) were managed with observation alone. The Denver, modified Memphis, Eastern Association for the Surgery of Trauma (EAST), and Utah scores, which are the currently used screening tools for BCVI, misclassified 6 (28.6%), 6 (28.6%), 7 (33.3%), and 10 (47.6%) patients with BCVI, respectively, as “low risk” and not in need of subsequent angiographic imaging. By incorporating the mechanism of injury into the score, the McGovern score only misclassified 4 (19.0%) children, all of whom were managed conservatively with no treatment or aspirin.


With a low incidence of pediatric BCVI and a nonsurgical treatment paradigm, a more conservative approach than the Biffl scale should be adopted. The Denver, modified Memphis, EAST, and Utah scores did not accurately predict BCVI in our equally large cohort. The McGovern score is the first BCVI screening tool to incorporate the mechanism of injury into its screening criteria, thereby potentially allowing physicians to minimize unnecessary radiation and determine which high-risk patients are truly in need of angiographic imaging.