Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Rafael O’Halloran x
Clear All Modify Search
Restricted access

Alexey Dimov, Wahaj Patel, Yihao Yao, Yi Wang, Rafael O’Halloran and Brian H. Kopell

OBJECTIVE

The objective of this study was to investigate the relationship between iron and white matter connectivity in the subthalamic nucleus (STN) in patients undergoing deep brain stimulation (DBS) of the STN for treatment of Parkinson’s disease.

METHODS

Nine Parkinson’s disease patients underwent preoperative 3T MRI imaging which included acquisition of T1-weighted anatomical images along with diffusion tensor imaging (DTI) and quantitative susceptibility mapping (QSM). MR tractography was performed for the seed voxels located within the STN, and the correlations between normalized QSM values and the STN’s connectivity to a set of a priori chosen regions of interest were assessed.

RESULTS

A strong negative correlation was found between STN connectivity and QSM intensity for the thalamus, premotor, motor, and sensory regions, while a strong positive correlation was found for frontal, putamen, and brain stem areas.

CONCLUSIONS

Quantitative susceptibility mapping not only accurately delineates the STN borders but is also able to provide functional information about the STN functional subdivisions. The observed iron-to-connectivity correlation patterns may aid in planning DBS surgery to avoid unwanted side effects associated with DBS.

Restricted access

Lily H. Kim, Edward H. Lee, Michelle Galvez, Murat Aksoy, Stefan Skare, Rafael O’Halloran, Michael S. B. Edwards, Samantha J. Holdsworth and Kristen W. Yeom

OBJECTIVE

Spine MRI is a diagnostic modality for evaluating pediatric CNS tumors. Applying diffusion-weighted MRI (DWI) or diffusion tensor imaging (DTI) to the spine poses challenges due to intrinsic spinal anatomy that exacerbates various image-related artifacts, such as signal dropouts or pileups, geometrical distortions, and incomplete fat suppression. The zonal oblique multislice (ZOOM)–echo-planar imaging (EPI) technique reduces geometric distortion and image blurring by reducing the field of view (FOV) without signal aliasing into the FOV. The authors hypothesized that the ZOOM-EPI method for spine DTI in concert with conventional spinal MRI is an efficient method for augmenting the evaluation of pediatric spinal tumors.

METHODS

Thirty-eight consecutive patients (mean age 8 years) who underwent ZOOM-EPI spine DTI for CNS tumor workup were retrospectively identified. Patients underwent conventional spine MRI and ZOOM-EPI DTI spine MRI. Two blinded radiologists independently reviewed two sets of randomized images: conventional spine MRI without ZOOM-EPI DTI, and conventional spine MRI with ZOOM-EPI DTI. For both image sets, the reviewers scored the findings based on lesion conspicuity and diagnostic confidence using a 5-point Likert scale. The reviewers also recorded presence of tumors. Quantitative apparent diffusion coefficient (ADC) measurements of various spinal tumors were extracted. Tractography was performed in a subset of patients undergoing presurgical evaluation.

RESULTS

Sixteen patients demonstrated spinal tumor lesions. The readers were in moderate agreement (kappa = 0.61, 95% CI 0.30–0.91). The mean scores for conventional MRI and combined conventional MRI and DTI were as follows, respectively: 3.0 and 4.0 for lesion conspicuity (p = 0.0039), and 2.8 and 3.9 for diagnostic confidence (p < 0.001). ZOOM-EPI DTI identified new lesions in 3 patients. In 3 patients, tractography used for neurosurgical planning showed characteristic fiber tract projections. The mean weighted ADCs of low- and high-grade tumors were 1201 × 10−6 and 865 × 10−6 mm2/sec (p = 0.002), respectively; the mean minimum weighted ADCs were 823 × 10−6 and 474 × 10−6 mm2/sec (p = 0.0003), respectively.

CONCLUSIONS

Diffusion MRI with ZOOM-EPI can improve the detection of spinal lesions while providing quantitative diffusion information that helps distinguish low- from high-grade tumors. By adding a 2-minute DTI scan, quantitative diffusion information and tract profiles can reliably be obtained and serve as a useful adjunct to presurgical planning for pediatric spinal tumors.