Search Results

You are looking at 1 - 10 of 28 items for

  • Author or Editor: R. John Hurlbert x
Clear All Modify Search
Restricted access

Taro Kaibara, R. John Hurlbert and Garnette R. Sutherland

✓ Transoral decompression of the cervicomedullary junction may be compromised by a narrow corridor in which surgery is performed, and thus the adequacy of surgical decompression/resection may be difficult to determine. This is problematic as the presence of spinal instrumentation may obscure the accuracy of postoperative radiological assessment, or the patient may require reoperation. The authors describe three patients in whom high-field intraoperative magnetic resonance (MR) images were acquired at various stages during the transoral resection of C-2 disease that had caused craniocervical junction compression.

All three patients harbored different lesions involving the cervicomedullary junction: one each of plasmacytoma and metastatic breast carcinoma involving the odontoid process and C-2 vertebral body, and basilar invagination with a Chiari I malformation. All patients presented with progressive myelopathy. Surgical planning MR imaging studies performed after the induction of anesthesia demonstrated the lesion and its relationship to the planned surgical corridor. Transoral exposure was achieved through placement of a Crockard retractor system. In one case the soft palate was divided. Interdissection MR imaging revealed that adequate decompression had been achieved in all cases. The two patients with carcinoma required placement of posterior instrumentation for stabilization. Planned suboccipital decompression and placement of instrumentation were averted in the third case as the intraoperative MR images demonstrated that excellent decompression had been achieved.

Intraoperatively acquired MR images were instrumental in determining the adequacy of the decompressive surgery. In one of the three cases, examination of the images led the authors to change the planned surgical procedure. Importantly, the acquisition of intraoperative MR images did not adversely affect operating time or neurosurgical techniques, including instrumentation requirements.

Restricted access

R. John Hurlbert

Object. Since publication in 1990, results from the National Acute Spinal Cord Injury Study II (NASCIS II) trial have changed the way patients suffering an acute spinal cord injury (SCI) are treated. More recently, recommendations from NASCIS III are being adopted by institutions around the world. The purpose of this paper is to reevaluate carefully the results and conclusions of these studies to determine the role they should play in influencing decisions about care of the acutely spinal cord—injured patient.

Methods. Published results from NASCIS II and III were reviewed in the context of the original study design, including primary outcomes compared with post-hoc comparisons. Data were retroconverted from tabular form back to raw form to allow direct inspection of changes in treatment groups. These findings were further analyzed with respect to justification of practice standards.

Although well-designed and well-executed, both NASCIS II and III failed to demonstrate improvement in primary outcome measures as a result of the administration of methylprednisolone. Post-hoc comparisons, although interesting, did not provide compelling data to establish a new standard of care in the treatment of patients with acute SCI.

Conclusions. The use of methylprednisolone administration in the treatment of acute SCI is not proven as a standard of care, nor can it be considered a recommended treatment. Evidence of the drug's efficacy and impact is weak and may only represent random events. In the strictest sense, 24-hour administration of methylprednisolone must still be considered experimental for use in clinical SCI. Forty-eight-hour therapy is not recommended. These conclusions are important to consider in the design of future trials and in the medicolegal arena.

Full access

Taro Kaibara, R. John Hurlbert and Garnette R. Sutherland

Object

Because transoral decompression of the cervicomedullary junction is compromised by a narrow surgical corridor, the adequacy of decompression/resection may be difficult to determine. This is problematic as spinal hardware may obscure postoperative radiological assessment, or the patient may require reoperation. The authors report three patients in whom high-field intraoperative magnetic resonance (MR) images were acquired at various stages during the transoral resection of C-2 lesions causing craniocervical junction compression.

Methods

In all three patients the lesions involved the cervicomedullary junction: one case each of plasmacytoma and metastatic breast carcinoma involving the odontoid process and C-2 vertebral body, and one case of basilar invagination with a Chiari type I malformation. All three patients presented with progressive myelopathy. Surgery-planning MR imaging studies, performed after the induction of anesthesia, demonstrated the lesion and its relationship to the planned surgical corridor. Transoral exposure was achieved through placement of a Crockard retractor system. In one case the soft palate was divided. Interdissection MR imaging revealed that adequate decompression had been achieved in all cases. In the two patients with carcinoma, posterior instrumentation was placed to achieve spinal stabilization. Planned suboccipital decompression and fixation was averted in the third case because MR imaging demonstrated that excellent decompression had been achieved.

Conclusions

Intraoperatively acquired MR images were instrumental in determining the adequacy of surgical decompression. In one patient the MR images changed the planned surgical procedure. Importantly, the acquisition of intraoperative MR images did not adversely affect operative time or neurosurgical techniques, including the instrumentation procedure.

Restricted access
Restricted access
Restricted access
Restricted access
Restricted access

R. John Hurlbert, Neil R. Crawford, Won Gyu Choi and Curtis A. Dickman

Object. The purpose of this study was to compare cable techniques used in occipitocervical fixation with two types of screw fixation. The authors hypothesized that screw fixation would provide superior immobilization compared with cable methods.

Methods. Ten cadaveric specimens were prepared for biomechanical analyses by using standard techniques. Angular and linear displacement data were recorded from the occiput to C-6 with infrared optical sensors after conditioning runs. Specimens underwent retesting after fatiguing. Six methods of fixation were analyzed: Steinmann pin with and without C-1 incorporation; Cotrel-Dubousett horseshoe with and without C-1 incorporation; Mayfield loop with C1–2 transarticular screw fixation; and a custom-designed occipitocervical transarticular screw-plate system. Sublaminar techniques were extended to include C-3 in the fusion construct, whereas transarticular techniques incorporated the occiput, C-1, and C-2 only.

All methods of fixation provided significant immobilization in all specimens compared with the nonconstrained destabilized state. Despite incorporation of an additional vertebral segment, sublaminar techniques performed worse as a function of applied load than screw fixation techniques. Following fatiguing, these differences were more pronounced. The sublaminar techniques failed most prominently in flexion—extension and in axial rotation. On gross inspection, increased angular displacement associated with loosening of the sublaminar cables was observed.

Conclusion. Occipitocervical fixation can be performed using a variety of techniques; all bestow significant immobilization compared with the destabilized spine. All methods tested in this study were susceptible to fatigue and loss of reduction and were weakest in resisting vertical settling. Screw fixation of the occiput—C2 reduces the number of vertebral segments that are necessary to incorporate into the fusion construct while providing superior immobilization and resistance to fatigue and vertical settling compared with sublaminar methods.