Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Pratik Mukherjee x
Clear All Modify Search
Restricted access

Ann-Christine Duhaime and Steven M. Stufflebeam

Restricted access

Jeffrey I. Berman, Mitchel S. Berger, Pratik Mukherjee and Roland G. Henry

Object. The goal of this study was to use diffusion-tensor (DT) magnetic resonance (MR) imaging to track fibers combined with cortical stimulation mapping to delineate descending motor pathways. Subcortical localization of motor pathways in relation to a glioma may provide critical information to guide tumor resection and prevent surgical morbidity.

Methods. Eleven adult patients harboring gliomas underwent MR imaging 1 day prior to image-guided intraoperative cortical motor mapping and tumor resection. Screens depicting 27 cortical motor sites on a surgical navigation system were saved to launch DT imaging of fiber tracks of descending motor pathways. The position and organization of motor tracts were visualized by fiber tracking. Tracks from 16 motor stimulation sites followed descending pathways from the precentral gyrus, through the corona radiata and internal capsule, and into the cerebral peduncle. These tracks were also observed on DT images to diverge along crossing white matter bundles (four patients) and to terminate or deviate in regions of peritumoral vasogenic edema (five patients).

Conclusions. The use of precise intraoperative cortical mapping information and DT images of fiber tracks can reveal the course of motor pathways beneath the cortex. The subcortical fiber tracks generated are consistent with the known anatomical course and somatotopic organization of the motor tract in relation to its cortical origins. Tracking fibers by using DT imaging in combination with functional localization has the potential to reduce surgical morbidity by revealing subcortical connections of the functional cortex.

Restricted access

Phiroz E. Tarapore, Anne M. Findlay, Sara C. LaHue, Hana Lee, Susanne M. Honma, Danielle Mizuiri, Tracy L. Luks, Geoffrey T. Manley, Srikantan S. Nagarajan and Pratik Mukherjee


Traumatic brain injury (TBI) is one of the leading causes of morbidity worldwide. One mechanism by which blunt head trauma may disrupt normal cognition and behavior is through alteration of functional connectivity between brain regions. In this pilot study, the authors applied a rapid automated resting state magnetoencephalography (MEG) imaging technique suitable for routine clinical use to test the hypothesis that there is decreased functional connectivity in patients with TBI compared with matched controls, even in cases of mild TBI. Furthermore, they posit that these abnormal reductions in MEG functional connectivity can be detected even in TBI patients without specific evidence of traumatic lesions on 3-T MR images. Finally, they hypothesize that the reductions of functional connectivity can improve over time across serial MEG scans during recovery from TBI.


Magnetoencephalography maps of functional connectivity in the alpha (8- to 12-Hz) band from 21 patients who sustained a TBI were compared with those from 18 age- and sex-matched controls. Regions of altered functional connectivity in each patient were detected in automated fashion through atlas-based registration to the control database. The extent of reduced functional connectivity in the patient group was tested for correlations with clinical characteristics of the injury as well as with findings on 3-T MRI. Finally, the authors compared initial connectivity maps with 2-year follow-up functional connectivity in a subgroup of 5 patients with TBI.


Fourteen male and 7 female patients (17–53 years old, median 29 years) were enrolled. By Glasgow Coma Scale (GCS) criteria, 11 patients had mild, 1 had moderate, and 3 had severe TBI, and 6 had no GCS score recorded. On 3-T MRI, 16 patients had abnormal findings attributable to the trauma and 5 had findings in the normal range. As a group, the patients with TBI had significantly lower functional connectivity than controls (p < 0.01). Three of the 5 patients with normal findings on 3-T MRI showed regions of abnormally reduced MEG functional connectivity. No significant correlations were seen between extent of functional disconnection and injury severity or posttraumatic symptoms (p > 0.05). In the subgroup undergoing 2-year follow-up, the second MEG scan demonstrated a significantly lower percentage of voxels with decreased connectivity (p < 0.05) than the initial MEG scan.


A rapid automated resting-state MEG imaging technique demonstrates abnormally decreased functional connectivity that may persist for years after TBI, including cases classified as “mild” by GCS criteria. Disrupted MEG connectivity can be detected even in some patients with normal findings on 3-T MRI. Analysis of follow-up MEG scans in a subgroup of patients shows that, over time, the abnormally reduced connectivity can improve, suggesting neuroplasticity during the recovery from TBI. Resting state MEG deserves further investigation as a prognostic and predictive biomarker for TBI.

Restricted access


Epileptic foci

Christopher P. Hess, Pratik Mukherjee and Nicholas M. Barbaro