Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Prasath Mageswaran x
Clear All Modify Search
Full access

Serkan İnceoğlu, Prasath Mageswaran, Michael T. Modic and Edward C. Benzel

Object

Spondylolysis is a common condition among the general population and a major cause of back pain in young athletes. This condition can be difficult to detect with plain radiography and has been reported to lead to contralateral pars fracture or pedicle fracture in the terminal stages. Interestingly, some patients with late-stage spondylolysis are observed to have radiographic or CT evidence of a sclerotic pedicle on the side contralateral to the spondylolysis. Although computational studies have shown stress elevation in the contralateral pedicle after a pars fracture, it is not known if these changes would cause sclerotic changes in the contralateral pedicle. The objective of this study was to investigate the adaptive remodeling process at the pedicle due to a contralateral spondylolysis using finite element analysis.

Methods

A multiscale finite element model of a vertebra was obtained by combining a continuum model of the posterior elements with a voxel-based pedicle section. Extension loading conditions were applied with or without a fracture at the contralateral pars to analyze the stresses in the contralateral pedicle. A remodeling algorithm was used to simulate and assess density changes in the contralateral pedicle.

Results

The remodeling algorithm demonstrated an increase in bone formation around the perimeter of the contralateral pedicle with some localized loss of mass in the region of cancellous bone.

Conclusions

The authors' results indicated that a pars fracture results in sclerotic changes in the contralateral pedicle. Such a remodeling process could increase overall bone mass. However, focal bone loss in the region of the cancellous bone of the pedicle might predispose the pedicle to microfractures. This phenomenon explains, at least in part, the origin of pedicle stress fractures in the sclerotic contralateral pedicles of patients with unilateral spondylolysis.

Full access

Tiffany G. Perry, Prasath Mageswaran, Robb W. Colbrunn, Tara F. Bonner, Todd Francis and Robert F. McLain

Object

Classic biomechanical models have used thoracic spines disarticulated from the rib cage, but the biomechanical influence of the rib cage on fracture biomechanics has not been investigated. The well-accepted construct for stabilizing midthoracic fractures is posterior instrumentation 3 levels above and 2 levels below the injury. Short-segment fixation failure in thoracolumbar burst fractures has led to kyphosis and implant failure when anterior column support is lacking. Whether shorter constructs are viable in the midthoracic spine is a point of controversy. The objective of this study was the biomechanical evaluation of a burst fracture at T-9 with an intact rib cage using different fixation constructs for stabilizing the spine.

Methods

A total of 8 human cadaveric spines (C7–L1) with intact rib cages were used in this study. The range of motion (ROM) between T-8 and T-10 was the outcome measure. A robotic spine testing system was programmed to apply pure moment loads (± 5 Nm) in lateral bending, flexion-extension, and axial rotation to whole thoracic specimens. Intersegmental rotations were measured using an optoelectronic system. Flexibility tests were conducted on intact specimens, then sequentially after surgically induced fracture at T-9, and after each of 4 fixation construct patterns. The 4 construct patterns were sequentially tested in a nondestructive protocol, as follows: 1) 3 above/2 below (3A/2B); 2) 1 above/1 below (1A/1B); 3) 1 above/1 below with vertebral body augmentation (1A/1B w/VA); and 4) vertebral body augmentation with no posterior instrumentation (VA). A repeated-measures ANOVA was used to compare the segmental motion between T-8 and T-10 vertebrae.

Results

Mean ROM increased by 86%, 151%, and 31% after fracture in lateral bending, flexion-extension, and axial rotation, respectively. In lateral bending, there was significant reduction compared with intact controls for all 3 instrumented constructs: 3A/2B (−92%, p = 0.0004), 1A/1B (−63%, p = 0.0132), and 1A/1B w/VA (−66%, p = 0.0150). In flexion-extension, only the 3A/2B pattern showed a significant reduction (−90%, p = 0.011). In axial rotation, motion was significantly reduced for the 3 instrumented constructs: 3A/2B (−66%, p = 0.0001), 1A/1B (−53%, p = 0.0001), and 1A/1B w/VA (−51%, p = 0.0002). Between the 4 construct patterns, the 3 instrumented constructs (3A/2B, 1A/1B, and 1A/1B w/VA) showed comparable stability in all 3 motion planes.

Conclusions

This study showed no significant difference in the stability of the 3 instrumented constructs tested when the rib cage is intact. Fractures that might appear more grossly unstable when tested in the disarticulated spine may be bolstered by the ribs. This may affect the extent of segmental spinal instrumentation needed to restore stability in some spine injuries. While these initial findings suggest that shorter constructs may adequately stabilize the spine in this fracture model, further study is needed before these results can be extrapolated to clinical application.

Restricted access

Prasath Mageswaran, Robert F. McLain, Robb Colbrunn, Tara Bonner, Elijah Hothem and Adam Bartsch

Object

This study compared the fixing strength and stability achieved by a unilateral plate and screw configuration against a standard cervical fixation plate using a single-level corpectomy and allograft strut graft model.

Methods

Multidirectional in vitro flexibility tests were performed using a robotic spine testing system. Human cadaveric spines were assessed for spinal stability after vertebral corpectomy and anterior instrumentation. Specimens were mounted cranially and caudally on custom jigs that were then attached to load cells on the robotic system's end effector and base pedestal. C2–T1 spine specimens (n = 6) were tested intact; then after C-5 corpectomy (the vertebral body was excised), allograft placement and anterior plate fixation were performed. The surgeons performed a uniform corpectomy and reconstruction of each specimen in a protocol fashion. Two plates were compared: a unilateral 4-hole cervical plate designed to obtain rigid fixation using 4 convergent fixation screws all placed unilateral to the vertebral midline, and a standard cervical plate with bilateral plate screw configuration. The plate testing sequence was selected at random to limit bias. Fixation screws were matched for length and diameter. Pure moments were applied under load control (maximum 1.8 Nm) in flexion, extension, left/right lateral bending, and left/right axial rotation. Vertebral motion was measured using an optoelectronic system. The mean relative range of motion between C-4 and C-6 was compared among groups using repeated-measures ANOVA (significance level of 0.05).

Results

In comparing the intact construct and 2 different plates in all planes of motion, only motion in extension (intact vs unilateral plate, p = 0.003; intact vs standard plate, p = 0.001) and left axial rotation (intact vs unilateral plate, p = 0.019) were significantly affected. In terms of immediate cervical stability after 1-level corpectomy and placement of an allograft reconstruction, the unilateral plate showed comparable stiffness to the standard plate in all 3 motion planes (flexion [p = 0.993], extension [p = 0.732], left lateral bending [p = 0.683], right lateral bending [p = 0.546], left axial rotation [p = 0.082], and right axial rotation [p = 0.489]). The unilateral plate showed a trend toward improved stiffness in axial rotation. In no direction did the unilateral configuration prove significantly less stiff than the traditional configuration.

Conclusions

The unilateral plate design proposed here requires minimal dissection and retraction beyond the midline of tissues susceptible to scar, postoperative pain, and swelling. The authors' study suggests that a unilateral plate can be configured to provide comparable fixation strength and torsional stiffness compared with traditional, widely accepted plate designs.

Restricted access

Prasath Mageswaran, Fernando Techy, Robb W. Colbrunn, Tara F. Bonner and Robert F. McLain

Object

The object of this study was to evaluate the effect of hybrid dynamic stabilization on adjacent levels of the lumbar spine.

Methods

Seven human spine specimens from T-12 to the sacrum were used. The following conditions were implemented: 1) intact spine; 2) fusion of L4–5 with bilateral pedicle screws and titanium rods; and 3) supplementation of the L4–5 fusion with pedicle screw dynamic stabilization constructs at L3–4, with the purpose of protecting the L3–4 level from excessive range of motion (ROM) and to create a smoother motion transition to the rest of the lumbar spine. An industrial robot was used to apply continuous pure moment (± 2 Nm) in flexion-extension with and without a follower load, lateral bending, and axial rotation. Intersegmental rotations of the fused, dynamically stabilized, and adjacent levels were measured and compared.

Results

In flexion-extension only, the rigid instrumentation at L4–5 caused a 78% decrease in the segment's ROM when compared with the intact specimen. To compensate, it caused an increase in motion at adjacent levels L1–2 (45.6%) and L2–3 (23.2%) only. The placement of the dynamic construct at L3–4 decreased the operated level's ROM by 80.4% (similar stability as the fusion at L4–5), when compared with the intact specimen, and caused a significant increase in motion at all tested adjacent levels. In flexion-extension with a follower load, instrumentation at L4–5 affected only a subadjacent level, L5–sacrum (52.0%), while causing a reduction in motion at the operated level (L4–5, −76.4%). The dynamic construct caused a significant increase in motion at the adjacent levels T12–L1 (44.9%), L1–2 (57.3%), and L5–sacrum (83.9%), while motion at the operated level (L3–4) was reduced by 76.7%. In lateral bending, instrumentation at L4–5 increased motion at only T12–L1 (22.8%). The dynamic construct at L3–4 caused an increase in motion at T12–L1 (69.9%), L1–2 (59.4%), L2–3 (44.7%), and L5–sacrum (43.7%). In axial rotation, only the placement of the dynamic construct at L3–4 caused a significant increase in motion of the adjacent levels L2–3 (25.1%) and L5–sacrum (31.4%).

Conclusions

The dynamic stabilization system displayed stability characteristics similar to a solid, all-metal construct. Its addition of the supraadjacent level (L3–4) to the fusion (L4–5) did protect the adjacent level from excessive motion. However, it essentially transformed a 1-level lumbar fusion into a 2-level lumbar fusion, with exponential transfer of motion to the fewer remaining discs.

Full access

Andrew T. Healy, Prasath Mageswaran, Daniel Lubelski, Benjamin P. Rosenbaum, Virgilio Matheus, Edward C. Benzel and Thomas E. Mroz

OBJECT

The degenerative process of the spinal column results in instability followed by a progressive loss of segmental motion. Segmental degeneration is associated with intervertebral disc and facet changes, which can be quantified. Correlating this degeneration with clinical segmental motion has not been investigated in the thoracic spine. The authors sought to determine if imaging-determined degeneration would correlate with native range of motion (ROM) or the change in ROM after decompressive procedures, potentially guiding clinical decision making in the setting of spine trauma or following decompressive procedures in the thoracic spine.

METHODS

Multidirectional flexibility tests with image analysis were performed on thoracic cadaveric spines with intact ib cage. Specimens consisted of 19 fresh frozen human cadaveric spines, spanning C-7 to L-1. ROM was obtained for each specimen in axial rotation (AR), flexion-extension (FE), and lateral bending (LB) in the intact state and following laminectomy, unilateral facetectomy, and unilateral costotransversectomy performed at either T4–5 (in 9 specimens) or T8–9 (in 10 specimens). Image grading of segmental degeneration was performed utilizing 3D CT reconstructions. Imaging scores were obtained for disc space degeneration, which quantified osteophytes, narrowing, and endplate sclerosis, all contributing to the Lane disc summary score. Facet degeneration was quantified using the Weishaupt facet summary score, which included the scoring of facet osteophytes, narrowing, hypertrophy, subchondral erosions, and cysts.

RESULTS

The native ROM of specimens from T-1 to T-12 (n = 19) negatively correlated with age in AR (Pearson’s r coefficient = -0.42, p = 0.070) and FE (r = -0.42, p = 0.076). When regional ROM (across 4 adjacent segments) was considered, the presence of disc osteophytes negatively correlated with FE (r = −0.69, p = 0.012), LB (r = −0.82, p = 0.001), and disc narrowing trended toward significance in AR (r = −0.49, p = 0.107). Facet characteristics, scored using multiple variables, showed minimal correlation to native ROM (r range from −0.45 to +0.19); however, facet degeneration scores at the surgical level revealed strong negative correlations with regional thoracic stability following decompressive procedures in AR and LB (Weishaupt facet summary score: r = −0.52 and r = −0.71; p = 0.084 and p = 0.010, respectively). Disc degeneration was not correlated (Lane disc summary score: r = −0.06, p = 0.861).

CONCLUSIONS

Advanced age was the most important determinant of decreasing native thoracic ROM, whereas imaging characteristics (T1–12) did not correlate with the native ROM of thoracic specimens with intact rib cages. Advanced facet degeneration at the surgical level did correlate to specimen stability following decompressive procedures, and is likely indicative of the terminal stages of segmental degeneration.

Full access

Andrew T. Healy, Swetha J. Sundar, Raul J. Cardenas, Prasath Mageswaran, Edward C. Benzel, Thomas E. Mroz and Todd B. Francis

Object

Single-level anterior cervical discectomy and fusion (ACDF) is an established surgical treatment for cervical myelopathy. Within 10 years of undergoing ACDF, 19.2% of patients develop symptomatic adjacent-level degeneration. Performing ACDF adjacent to prior fusion requires exposure and removal of previously placed hardware, which may increase the risk of adverse outcomes. Zero-profile cervical implants combine an interbody spacer with an anterior plate into a single device that does not extend beyond the intervertebral disc space, potentially obviating the need to remove prior hardware. This study compared the biomechanical stability and adjacent-level range of motion (ROM) following placement of a zero-profile device (ZPD) adjacent to a single-level ACDF against a standard 2-level ACDF.

Methods

In this in vitro biomechanical cadaveric study, multidirectional flexibility testing was performed by a robotic spine system that simulates flexion-extension, lateral bending, and axial rotation by applying a continuous pure moment load. Testing conditions were as follows: 1) intact, 2) C5–6 ACDF, 3) C4–5 ZPD supraadjacent to simulated fusion at C5–6, and 4) 2-level ACDF (C4–6). The sequence of the latter 2 test conditions was randomized. An unconstrained pure moment of 1.5 Nm with a 40-N simulated head weight load was applied to the intact condition first in all 3 planes of motion and then using the hybrid test protocol, overall intact kinematics were replicated subsequently for each surgical test condition. Intersegmental rotations were measured optoelectronically. Mean segmental ROM for operated levels and adjacent levels was recorded and normalized to the intact condition and expressed as a percent change from intact. A repeated-measures ANOVA was used to analyze the ROM between test conditions with a 95% level of significance.

Results

No statistically significant differences in immediate construct stability were found between construct Patterns 3 and 4, in all planes of motion (p > 0.05). At the operated level, C4–5, the zero-profile construct showed greater decreases in axial rotation (–45% vs –36%) and lateral bending (–55% vs –38%), whereas the 2-level ACDF showed greater decreases in flexion-extension (–40% vs –34%). These differences were marginal and not statistically significant. Adjacent-level motion was nearly equivalent, with minor differences in flexion-extension.

Conclusions

When treating degeneration adjacent to a single-level ACDF, a zero-profile implant showed stabilizing potential at the operated level statistically similar to that of the standard revision with a 2-level plate. Revision for adjacent-level disease is common, and using a ZPD in this setting should be investigated clinically because it may be a faster, safer alternative.