Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Philipp J. Slotty x
Clear All Modify Search
Full access

Philipp J. Slotty, Amr Abdulazim, Kunihiko Kodama, Mani Javadi, Daniel Hänggi, Volker Seifert and Andrea Szelényi

OBJECTIVE

Methods of choice for neurophysiological intraoperative monitoring (IOM) within the infratentorial compartment mostly include early brainstem auditory evoked potentials, free-running electromyography, and direct cranial nerve (CN) stimulation. Long-tract monitoring with somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) is rarely used. This study investigated the incidence of IOM alterations during posterior fossa surgery stratified for lesion location.

METHODS

Standardized CN and SEP/MEP IOM was performed in 305 patients being treated for various posterior fossa pathologies. The IOM data were correlated with lesion locations and histopathological types as well as other possible confounding factors.

RESULTS

Alterations in IOM were observed in 158 of 305 cases (51.8%) (CN IOM alterations in 130 of 305 [42.6%], SEP/MEP IOM alterations in 43 of 305 [14.0%]). In 15 cases (4.9%), simultaneous changes in long tracts and CNs were observed. The IOM alterations were followed by neurological sequelae in 98 of 305 cases (32.1%); 62% of IOM alterations resulted in neurological deficits. Sensitivity and specificity for detection of CN deficits were 98% and 77%, respectively, and 95% and 85%, respectively, for long-tract deficits. Regarding location, brainstem and petroclival lesions were closely associated with concurrent CN IOM and SEP/MEP alterations.

CONCLUSIONS

The incidence of IOM alterations during surgery in the posterior fossa varied widely between different lesion locations and histopathological types. This analysis provides crucial information on the necessity of IOM in different surgical settings. Because MEP/SEP and CN IOM alterations were commonly observed during posterior fossa surgery, the authors recommend the simultaneous use of both modalities based on lesion location.

Restricted access

Nima Etminan, Corinna Peters, Julian Ficnar, Suzan Anlasik, Erich Bünemann, Philipp J. Slotty, Daniel Hänggi, Hans-Jakob Steiger, Rüdiger V. Sorg and Walter Stummer

Object

Five-aminolevulinic acid–mediated photodynamic therapy (ALA/PDT) can improve the clinical outcome in patients suffering from glioblastoma. Besides direct phototoxicity, additional mechanisms may contribute. Therefore, the authors studied the influence of ALA/PDT on glioblastoma's migratory and invasive behavior in a human glioma cell spheroid model.

Methods

Glioma spheroids were grown from human U373 and A172 cell lines. After ALA/PDT of spheroids, the authors assessed the migration of tumor cells and their capacity to invade a collagen matrix, as well as changes in their viability, morphology, and expression of matrix metalloproteinases (MMPs).

Results

The authors found that ALA/PDT caused long-lasting, nearly complete suppression of glioma cell migration and matrix invasion compared with nontherapeutic controls, including either irradiation or incubation with ALA only. Although ALA/PDT induced tumor cell apoptosis, suppression of migration/invasion was not simply due to phototoxicity because 50% of tumor cells remained vital throughout the observation period. Moreover, the morphology of ALA/PDT-treated cells changed significantly toward a polygonal, epithelial-like appearance, which was associated with alterations in the actin cytoskeleton. Furthermore, downregulation of MMP-7 and -8 was observed after treatment whereas other MMPs remained unchanged.

Conclusions

In addition to directly eliminating glioma cells through apoptosis, ALA/PDT alters their invasiveness, possibly due to the effects on the cytoskeletal organization and MMP expression.

Restricted access

Martin Jakobs, Ann-Kristin Helmers, Michael Synowitz, Philipp J. Slotty, Judith M. Anthofer, Jürgen R. Schlaier, Manja Kloss, Andreas W. Unterberg and Karl L. Kiening

OBJECTIVE

Rechargeable neurostimulators for deep brain stimulation have been available since 2008, promising longer battery life and fewer replacement surgeries compared to non-rechargeable systems. Long-term data on how recharging affects movement disorder patients are sparse. This is the first multicenter, patient-focused, industry-independent study on rechargeable neurostimulators.

METHODS

Four neurosurgical centers sent a questionnaire to all adult movement disorder patients with a rechargeable neurostimulator implanted at the time of the trial. The primary endpoint was the convenience of the recharging process rated on an ordinal scale from “very hard” (1) to “very easy” (5). Secondary endpoints were charge burden (time spent per week on recharging), user confidence, and complication rates. Endpoints were compared for several subgroups.

RESULTS

Datasets of 195 movement disorder patients (66.1% of sent questionnaires) with Parkinson’s disease (PD), tremor, or dystonia were returned and included in the analysis. Patients had a mean age of 61.3 years and the device was implanted for a mean of 40.3 months. The overall convenience of recharging was rated as “easy” (4). The mean charge burden was 122 min/wk and showed a positive correlation with duration of therapy; 93.8% of users felt confident recharging the device. The rate of surgical revisions was 4.1%, and the infection rate was 2.1%. Failed recharges occurred in 8.7% of patients, and 3.6% of patients experienced an interruption of therapy because of a failed recharge. Convenience ratings by PD patients were significantly worse than ratings by dystonia patients. Caregivers recharged the device for the patient in 12.3% of cases. Patients who switched from a non-rechargeable to a rechargeable neurostimulator found recharging to be significantly less convenient at a higher charge burden than did patients whose primary implant was rechargeable. Age did not have a significant impact on any endpoint.

CONCLUSIONS

Overall, patients with movement disorders rated recharging as easy, with low complication rates and acceptable charge burden.