Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Phan Q. Duy x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Garrett Allington, Phan Q. Duy, Jian Ryou, Amrita Singh, Emre Kiziltug, Stephanie M. Robert, Adam J. Kundishora, Spencer King, Shozeb Haider, Kristopher T. Kahle, and Sheng Chih Jin

Congenital hydrocephalus (CH), characterized by incomplete clearance of CSF and subsequent enlargement of brain ventricles, is the most common congenital brain disorder. The lack of curative strategies for CH reflects a poor understanding of the underlying pathogenesis. Herein, the authors present an overview of recent findings in the pathogenesis of CH from human genetic studies and discuss the implications of these findings for treatment of CH. Findings from these omics data have the potential to reclassify CH according to a molecular nomenclature that may increase precision for genetic counseling, outcome prognostication, and treatment stratification. Beyond the immediate patient benefits, genomic data may also inform future clinical trials and catalyze the development of nonsurgical, molecularly targeted therapies. Therefore, the authors advocate for further application of genomic sequencing in clinical practice by the neurosurgical community as a diagnostic adjunct in the evaluation and management of patients diagnosed with CH.

Restricted access

Elena I. Fomchenko, E. Zeynep Erson-Omay, Adam J. Kundishora, Christopher S. Hong, Ava A. Daniel, August Allocco, Phan Q. Duy, Armine Darbinyan, Asher M. Marks, Michael L. DiLuna, Kristopher T. Kahle, and Anita Huttner

Pediatric midline tumors are devastating high-grade lesions with a dismal prognosis and no curative surgical options. Here, the authors report the clinical presentation, surgical management, whole-exome sequencing (WES), and clonality analysis of a patient with a radically resected H3K27M-mutant pineal parenchymal tumor (PPT) and spine metastases consistent with PPT of intermediate differentiation (PPTID). They identified somatic mutations in H3F3A (H3K27M), FGFR1, and NF1 both in the original PPT and in the PPTID metastases. They also found 12q amplification containing CDK4/MDM2 and chromosome 17 loss of heterozygosity overlapping with NF1 that resulted in biallelic NF1 loss. They noted a hypermutated phenotype with increased C>T transitions within the PPTID metastases and 2p amplification overlapping with the MYCN locus. Clonality analysis detected three founder clones maintained during progression and metastasis. Tumor clones present within the PPTID metastases but not the pineal midline tumor harbored mutations in APC and TIMP2.

While the majority of H3K27M mutations are found in pediatric midline gliomas, it is increasingly recognized that this mutation is present in a wider range of lesions with a varied morphological appearance. The present case appears to be the first description of H3K27M mutation in PPTID. Somatic mutations in H3F3A, FGFR1, and NF1 have been suggested to be driver mutations in pediatric midline gliomas. Their clonality and presence in over 80% of tumor cells in our patient’s PPTID are consistent with similarly crucial roles in early tumorigenesis, with progression mediated by copy number variations and chromosomal aberrations involving known oncogenes and tumor suppressors. The roles of APC and TIMP2 mutations in progression and metastasis remain to be investigated.