Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Peter Ssenyonga x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Jordan D. Lane, John Mugamba, Peter Ssenyonga, and Benjamin C. Warf

Object

Antibiotic-impregnated shunts have yet to find widespread use in the developing world, largely due to cost. Given potential differences in the microbial spectrum, their effectiveness in preventing shunt infection for populations in low-income countries may differ and has not been demonstrated. This study is the first to compare the efficacy of a Bactiseal shunt system with a non–antibiotic-impregnated system in a developing country.

Methods

The Bactiseal Universal Shunt (BUS) was placed in 80 consecutive Ugandan children who required a shunt. In this retrospective cohort study, the outcome for that group was compared with the outcome for the immediately preceding 80 consecutive children in whom a Chhabra shunt had been placed. The primary end points were shunt failure, shunt infection, and death. Shunt survival was analyzed using the Kaplan-Meier method. Significance of differences between groups was tested using the log-rank test, chi-square analysis, Fisher's exact test, and t-test.

Results

There was no difference between groups in regard to age, sex, or etiology of hydrocephalus. Mean follow-up for cases of nonfailure was 7.6 months (median 7.8 months, interquartile range 6.5–9.5 months). There was no significant difference between groups for any end point. The BUS group had fewer infections (4 vs 11), but the difference was not significant (p = 0.086, log-rank test). Gram-positive cocci were the most common culturable pathogens in the Chhabra group, while the only positive culture in the BUS group was a gram-negative rod.

Conclusions

These results provide equipoise for a randomized controlled trial in the same population and this has been initiated. It is possible that the observed trends may become significant in a larger study. The more complex task will involve determining not only the efficacy, but also the cost-effectiveness of using antibiotic-impregnated shunt components in limited-resource settings.

Free access

Michael C. Dewan, Justin Onen, Hansen Bow, Peter Ssenyonga, Charles Howard, and Benjamin C. Warf

There is inadequate pediatric neurosurgical training to meet the growing burden of disease in low- and middle-income countries (LMIC). Subspecialty expertise in the management of hydrocephalus and spina bifida—two of the most common pediatric neurosurgical conditions—offers a high-yield opportunity to mitigate morbidity and avoid unnecessary death. The CURE Hydrocephalus and Spina Bifida (CHSB) fellowship offers an intensive subspecialty training program designed to equip surgeons from LMIC with the state-of-the-art surgical skills and equipment to most effectively manage common neurosurgical conditions of childhood. Prospective fellows and their home institution undergo a comprehensive evaluation before being accepted for the 8-week training period held at CURE Children’s Hospital of Uganda (CCHU) in Mbale, Uganda. The fellowship combines anatomy review, treatment paradigms, a flexible endoscopic simulation lab, daily ward and ICU rounds, radiology rounds, and clinic exposure. The cornerstone of the fellowship is the unique operative experience that includes a high volume of endoscopic third ventriculostomy with choroid plexus cauterization, myelomeningocele closure, and ventriculoperitoneal shunting, among many other procedures performed at CCHU. Upon completion, fellows return to their home institution to establish or rejuvenate a robust pediatric practice as part of a worldwide network of CHSB trainees committed to the care of underserved children. To date, the fellowship has graduated 33 surgeons from 20 different LMIC who are independently performing thousands of hydrocephalus and spina bifida operations each year.

Free access

Paul J. Marano, Scellig S. D. Stone, John Mugamba, Peter Ssenyonga, Ezra B. Warf, and Benjamin C. Warf

OBJECT

The role of reopening an obstructed endoscopic third ventriculostomy (ETV) as treatment for ETV failure is not well defined. The authors studied 215 children with ETV closure who underwent successful repeat ETV to determine the indications, long-term success, and factors affecting outcome.

METHODS

The authors retrospectively reviewed the CURE Children's Hospital of Uganda database from August 2001 through December 2012, identifying 215 children with failed ETV (with or without prior choroid plexus cauterization [CPC]) who underwent reopening of an obstructed ETV stoma. Treatment survival according to sex, age at first and second operation, time to failure of first operation, etiology of hydrocephalus, prior CPC, and mode of ETV obstruction (simple stoma closure, second membrane, or cisternal obstruction from arachnoid scarring) were assessed using the Kaplan-Meier survival method. Survival differences among groups were assessed using log-rank and Wilcoxon methods and a Cox proportional hazards model.

RESULTS

There were 125 boys and 90 girls with mean and median ages of 229 and 92 days, respectively, at the initial ETV. Mean and median ages at repeat ETV were 347 and 180 days, respectively. Postinfectious hydrocephalus (PIH) was the etiology in 126 patients, and nonpostinfectious hydrocephalus (NPIH) in 89. Overall estimated 7-year success for repeat ETV was 51%. Sex (p = 0.46, log-rank test; p = 0.54, Wilcoxon test), age (< vs > 6 months) at initial or repeat ETV (p = 0.08 initial, p = 0.13 repeat; log-rank test), and type of ETV obstruction (p = 0.61, log-rank test) did not affect outcome for repeat ETV (p values ≥ 0.05, Cox regression). Those with a longer time to failure of initial ETV (> 6 months 91%, 3–6 months 60%, < 3 months 42%, p < 0.01; log-rank test), postinfectious etiology (PIH 58% vs NPIH 42%, p = 0.02; log-rank and Wilcoxon tests) and prior CPC (p = 0.03, log-rank and Wilcoxon tests) had significantly better outcome.

CONCLUSIONS

Repeat ETV was successful in half of the patients overall, and was more successful in association with later failures, prior CPC, and PIH. Obstruction of the original ETV by secondary arachnoid scarring was not a negative prognostic factor, and should not discourage the surgeon from proceeding. Repeat ETV may be a more durable solution to failed ETV/CPC than shunt placement in this context, especially for failures at more than 3 months after the initial ETV. Some ETV closures may result from an inflammatory response that is less robust at the second operation.

Restricted access

Edith Mbabazi-Kabachelor, Meghal Shah, Kerry A. Vaughan, John Mugamba, Peter Ssenyonga, Justin Onen, Esther Nalule, Kush Kapur, and Benjamin C. Warf

OBJECTIVE

Clinical and economic repercussions of ventricular shunt infections are magnified in low-resource countries. The efficacy of antibiotic-impregnated shunts in this setting is unclear. A previous retrospective cohort study comparing the Bactiseal Universal Shunt (BUS) and the Chhabra shunt provided clinical equipoise; thus, the authors conducted this larger randomized controlled trial in Ugandan children requiring shunt placement for hydrocephalus to determine whether there was, in fact, any advantage of one shunt over the other.

METHODS

Between April 2013 and September 2016, the authors randomly assigned children younger than 16 years of age without evidence of ventriculitis to either BUS or Chhabra shunt implantation in this single-blind randomized controlled trial. The primary outcome was shunt infection, and secondary outcomes included reoperation and death. The minimum follow-up was 6 months. Time to outcome was assessed using the Kaplan-Meier method. The significance of differences was tested using Wilcoxon rank-sum, chi-square, Fisher’s exact, and t-tests.

RESULTS

Of the 248 patients randomized, the BUS was implanted in 124 and the Chhabra shunt in 124. There were no differences between the groups in terms of age, sex, or hydrocephalus etiology. Within 6 months of follow-up, there were 14 infections (5.6%): 6 BUS (4.8%) and 8 Chhabra (6.5%; p = 0.58). There were 14 deaths (5.6%; 5 BUS [4.0%] vs 9 Chhabra [7.3%], p = 0.27) and 30 reoperations (12.1%; 15 BUS vs 15 Chhabra, p = 1.00). There were no significant differences in the time to primary or secondary outcomes at 6 months’ follow-up (p = 0.29 and 0.17, respectively, Wilcoxon rank-sum test).

CONCLUSIONS

Among Ugandan infants, BUS implantation did not result in a lower incidence of shunt infection or other complications. Any recommendation for a more costly standard of care in low-resource countries must have contextually relevant, evidence-based support.

Clinical trial registration no.: PACTR201804003240177 (http://www.pactr.org/)

Restricted access

Steven J. Schiff, Abhaya V. Kulkarni, Edith Mbabazi-Kabachelor, John Mugamba, Peter Ssenyonga, Ruth Donnelly, Jody Levenbach, Vishal Monga, Mallory Peterson, Venkateswararao Cherukuri, and Benjamin C. Warf

OBJECTIVE

Hydrocephalus in infants, particularly that with a postinfectious etiology, is a major public health burden in Sub-Saharan Africa. The authors of this study aimed to determine whether surgical treatment of infant postinfectious hydrocephalus in Uganda results in sustained, long-term brain growth and improved cognitive outcome.

METHODS

The authors performed a trial at a single center in Mbale, Uganda, involving infants (age < 180 days old) with postinfectious hydrocephalus randomized to endoscopic third ventriculostomy plus choroid plexus cauterization (ETV+CPC; n = 51) or ventriculoperitoneal shunt (VPS; n = 49). After 2 years, they assessed developmental outcome with the Bayley Scales of Infant Development, Third Edition (BSID-III), and brain volume (raw and normalized for age and sex) with CT scans.

RESULTS

Eighty-nine infants were assessed for 2-year outcome. There were no significant differences between the two surgical treatment arms in terms of BSID-III cognitive score (p = 0.17) or brain volume (p = 0.36), so they were analyzed together. Raw brain volumes increased between baseline and 2 years (p < 0.001), but this increase occurred almost exclusively in the 1st year (p < 0.001). The fraction of patients with a normal brain volume increased from 15.2% at baseline to 50.0% at 1 year but then declined to 17.8% at 2 years. Substantial normalized brain volume loss was seen in 21.3% patients between baseline and year 2 and in 76.7% between years 1 and 2. The extent of brain growth in the 1st year was not associated with the extent of brain volume changes in the 2nd year. There were significant positive correlations between 2-year brain volume and all BSID-III scores and BSID-III changes from baseline.

CONCLUSIONS

In Sub-Saharan Africa, even after successful surgical treatment of infant postinfectious hydrocephalus, early posttreatment brain growth stagnates in the 2nd year. While the reasons for this finding are unclear, it further emphasizes the importance of primary infection prevention and mitigation strategies along with optimizing the child’s environment to maximize brain growth potential.

Restricted access

Jessica R. Lane, Paddy Ssentongo, Mallory R. Peterson, Joshua R. Harper, Edith Mbabazi-Kabachelor, John Mugamba, Peter Ssenyonga, Justin Onen, Ruth Donnelly, Jody Levenbach, Venkateswararao Cherukuri, Vishal Monga, Abhaya V. Kulkarni, Benjamin C. Warf, and Steven J. Schiff

OBJECTIVE

This study investigated the incidence of postoperative subdural collections in a cohort of African infants with postinfectious hydrocephalus. The authors sought to identify preoperative factors associated with increased risk of development of subdural collections and to characterize associations between subdural collections and postoperative outcomes.

METHODS

The study was a post hoc analysis of a randomized controlled trial at a single center in Mbale, Uganda, involving infants (age < 180 days) with postinfectious hydrocephalus randomized to receive either an endoscopic third ventriculostomy plus choroid plexus cauterization or a ventriculoperitoneal shunt. Patients underwent assessment with the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III; sometimes referred to as BSID-III) and CT scans preoperatively and then at 6, 12, and 24 months postoperatively. Volumes of brain, CSF, and subdural fluid were calculated, and z-scores from the median were determined from normative curves for CSF accumulation and brain growth. Linear and logistic regression models were used to characterize the association between preoperative CSF volume and the postoperative presence and size of subdural collection 6 and 12 months after surgery. Linear regression and smoothing spline ANOVA were used to describe the relationship between subdural fluid volume and cognitive scores. Causal mediation analysis distinguished between the direct and indirect effects of the presence of a subdural collection on cognitive scores.

RESULTS

Subdural collections were more common in shunt-treated patients and those with larger preoperative CSF volumes. Subdural fluid volumes were linearly related to preoperative CSF volumes. In terms of outcomes, the Bayley-III cognitive score was linearly related to subdural fluid volume. The distribution of cognitive scores was significantly different for patients with and those without subdural collections from 11 to 24 months of age. The presence of a subdural collection was associated with lower cognitive scores and smaller brain volume 12 months after surgery. Causal mediation analysis demonstrated evidence supporting both a direct (76%) and indirect (24%) effect (through brain volume) of subdural collections on cognitive scores.

CONCLUSIONS

Larger preoperative CSF volume and shunt surgery were found to be risk factors for postoperative subdural collection. The size and presence of a subdural collection were negatively associated with cognitive outcomes and brain volume 12 months after surgery. These results have suggested that preoperative CSF volumes could be used for risk stratification for treatment decision-making and that future clinical trials of alternative shunt technologies to reduce overdrainage should be considered.