Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Paula Petti x
Clear All Modify Search
Restricted access

Paula L. Petti, David A. Larson and Sandeep Kunwar

Object

The authors investigated the use of different collimator values in different sectors (hybrid shots) when treating patients with lesions close to critical structures with the Perfexion model Gamma Knife.

Methods

Twelve patients with various tumors (6 with a pituitary tumor, 3 with vestibular schwannoma, 2 with meningioma, and 1 with metastatic lesion) that were within 4 mm of the brainstem, optic nerve, pituitary stalk, or cochlea were considered. All patients were treated at the authors' institution between June 2007 and March 2008. The patients' treatments were replanned in 2 different ways. In the first plan, hybrid shots were used such that the steepest dose gradient was aligned with the junction between the target and the critical structure(s). This was accomplished by placing low-value collimators in appropriate sectors. In the second plan, no hybrid shots were used. Sector blocking (either manual or dynamic) was required for all plans to reduce the critical structure doses to acceptable levels. Prescribed doses ranged from 12 to 30 Gy at the periphery of the target. The plans in each pair were designed to be equally conformal in terms of both target coverage (as measured by the Paddick conformity index) and critical structure sparing.

Results

The average number of shots required was roughly the same using either planning technique (16.7 vs 16.6 shots with and without hybrids). However, for all patients, the number of blocked sectors required to protect critical areas was larger when hybrid shots were not used. On average, nearly twice as many blocked sectors (14.8 vs 7.0) were required for the plans that did not use hybrid shots. The number of high-value collimators used in each plan was also evaluated. For small targets (≤ 1 cm3), for which 8 mm was considered a high value for the collimator, plans employing hybrids used an average of 2.3 times as many 8-mm sectors as did their nonhybrid counterparts (7.4 vs 3.2 sectors). For large targets (> 1 cm3), for which 16 mm was considered a high value for the collimator, hybrid plans used an average of 1.4 times as many 16-mm sectors as did the plans without hybrids (10.7 vs 7.7 sectors). Decreasing the number of blocked sectors and increasing the number of high-value collimator sectors led to use of shorter beam-on times. Beam-on times were 1–39% higher (average 17%) when hybrid shots were not allowed. The average beam-on time for plans with and without hybrid shots was 67.4 versus 78.4 minutes.

Conclusions

The judicious use of hybrid shots in patients for whom the target is close to a critical structure is an efficient way to achieve conformal treatments while minimizing the beam-on time. The reduction in beam-on time with hybrid shots is attributed to a reduced use of blocked sectors and an increased number of high-value collimator sectors.

Restricted access

Lijun Ma, Paula Petti, Brian Wang, Martina Descovich, Cynthia Chuang, Igor J. Barani, Sandeep Kunwar, Dennis C. Shrieve, Arjun Sahgal and David A. Larson

Object

Technical improvements in commercially available radiosurgery platforms have made it practical to treat a large number of intracranial targets. The goal of this study was to investigate whether the dose to normal brain when planning radiosurgery to multiple targets is apparatus dependent.

Methods

The authors selected a single case involving a patient with 12 metastatic lesions widely distributed throughout the brain as visualized on contrast-enhanced CT. Target volumes and critical normal structures were delineated with Leksell Gamma Knife Perfexion software. The imaging studies including the delineated contours were digitally exported into the CyberKnife and Novalis multileaf collimator–based planning systems for treatment planning using identical target dose goals and dose-volume constraints. Subsets of target combinations (3, 6, 9, or 12 targets) were planned separately to investigate the relationship of number of targets and radiosurgery platform to the dose to normal brain.

Results

Despite similar target dose coverage and dose to normal structures, the dose to normal brain was strongly apparatus dependent. A nonlinear increase in dose to normal brain volumes with increasing number of targets was also noted.

Conclusions

The dose delivered to normal brain is strongly dependent on the radiosurgery platform. How general this conclusion is and whether apparatus-dependent differences are related to differences in hardware design or differences in dose-planning algorithms deserve further investigation.

Restricted access

Steven G. Ojemann, Penny K. Sneed, David A. Larson, Philip H. Gutin, Mitchel S. Berger, Lynn Verhey, Vernon Smith, Paula Petti, William Wara, Elaine Park and Michael W. McDermott

Object. The initial treatment of malignant meningiomas in the past has included surgical removal followed by fractionated external-beam radiotherapy. Radiosurgery has been added to the options for treatment of primary or recurrent tumors over the last 10 years. The authors report their results of using gamma knife radiosurgery (GKS) to treat 22 patients over an 8-year period.

Methods. Twenty-two patients who underwent GKS for malignant meningioma between December 1991 and May 1999 were evaluated. Three patients were treated with GKS as a boost to radiotherapy and 19 for recurrence following radiotherapy. Outcome factors including patient survival, freedom from progression, and complications were analyzed. In addition, in the recurrent group, variables such as patient age, sex, tumor location, target volume, margin dose, and maximum dose were also analyzed. Univariate and multivariate analyses were performed.

Overall 5-year survival and progression-free survival estimates were 40% and 26%, respectively. Age (p ≤ 0.003) and tumor volume (p ≤ 0.05) were significant predictors of time to progression and survival in both univariate and multivariate analyses. Five patients (23%) developed radiation necrosis. Significant relationships between complications and treatment variables or patient characteristics could not be established.

Conclusions. Tumor control following GKS is greater in patients with smaller-sized tumors (< 8 cm3) and in younger patients. Gamma knife radiosurgery can be performed to treat malignant meningioma with acceptable toxicity. The efficacy of GKS relative to other therapies for recurrent malignant meningioma as well as the value of GKS as a boost to radiotherapy will require further evaluation.

Restricted access

Jason Sheehan, Stanley Benedict and David Schlesinger

Full access

Jason P. Sheehan, Robert M. Starke, Hideyuki Kano, Anthony M. Kaufmann, David Mathieu, Fred A. Zeiler, Michael West, Samuel T. Chao, Gandhi Varma, Veronica L. S. Chiang, James B. Yu, Heyoung L. McBride, Peter Nakaji, Emad Youssef, Norissa Honea, Stephen Rush, Douglas Kondziolka, John Y. K. Lee, Robert L. Bailey, Sandeep Kunwar, Paula Petti and L. Dade Lunsford

Object

Parasellar and sellar meningiomas are challenging tumors owing in part to their proximity to important neurovascular and endocrine structures. Complete resection can be associated with significant morbidity, and incomplete resections are common. In this study, the authors evaluated the outcomes of parasellar and sellar meningiomas managed with Gamma Knife radiosurgery (GKRS) both as an adjunct to microsurgical removal or conventional radiation therapy and as a primary treatment modality.

Methods

A multicenter study of patients with benign sellar and parasellar meningiomas was conducted through the North American Gamma Knife Consortium. For the period spanning 1988 to 2011 at 10 centers, the authors identified all patients with sellar and/or parasellar meningiomas treated with GKRS. Patients were also required to have a minimum of 6 months of imaging and clinical follow-up after GKRS. Factors predictive of new neurological deficits following GKRS were assessed via univariate and multivariate analyses. Kaplan-Meier analysis and Cox multivariate regression analysis were used to assess factors predictive of tumor progression.

Results

The authors identified 763 patients with sellar and/or parasellar meningiomas treated with GKRS. Patients were assessed clinically and with neuroimaging at routine intervals following GKRS. There were 567 females (74.3%) and 196 males (25.7%) with a median age of 56 years (range 8–90 years). Three hundred fifty-five patients (50.7%) had undergone at least one resection before GKRS, and 3.8% had undergone prior radiation therapy. The median follow-up after GKRS was 66.7 months (range 6–216 months). At the last follow-up, tumor volumes remained stable or decreased in 90.2% of patients. Actuarial progression-free survival rates at 3, 5, 8, and 10 years were 98%, 95%, 88%, and 82%, respectively. More than one prior surgery, prior radiation therapy, or a tumor margin dose < 13 Gy significantly increased the likelihood of tumor progression after GKRS.

At the last clinical follow-up, 86.2% of patients demonstrated no change or improvement in their neurological condition, whereas 13.8% of patients experienced symptom progression. New or worsening cranial nerve deficits were seen in 9.6% of patients, with cranial nerve (CN) V being the most adversely affected nerve. Functional improvements in CNs, especially in CNs V and VI, were observed in 34% of patients with preexisting deficits. New or worsened endocrinopathies were demonstrated in 1.6% of patients; hypothyroidism was the most frequent deficiency. Unfavorable outcome with tumor growth and accompanying neurological decline was statistically more likely in patients with larger tumor volumes (p = 0.022) and more than 1 prior surgery (p = 0.021).

Conclusions

Gamma Knife radiosurgery provides a high rate of tumor control for patients with parasellar or sellar meningiomas, and tumor control is accompanied by neurological preservation or improvement in most patients.