Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Paul S. Horn x
Clear All Modify Search
Restricted access

Ryan M. Martin, Matthew J. Wright, Evan S. Lutkenhoff, Benjamin M. Ellingson, John D. Van Horn, Meral Tubi, Jeffry R. Alger, David L. McArthur and Paul M. Vespa

OBJECTIVE

Hemorrhagic contusions are often the most visible lesions following traumatic brain injury. However, the incidence, location, and natural history of traumatic parenchymal hemorrhage and its impact on neurological outcome have been understudied. The authors sought to examine the location and longitudinal evolution of traumatic parenchymal hemorrhage and its association with cognitive outcome.

METHODS

Sixteen patients with hemorrhagic contusions due to acceleration-deceleration injuries underwent MRI in the acute (mean 6.3 days postinjury) and chronic (mean 192.9 days postinjury) phases. ImageJ was used to generate GRE and FLAIR volumes. To account for the effect of head-size variability across individuals, the authors calculated each patient's total brain tissue volume using SIENAX. GRE and FLAIR volumes were normalized to the total brain tissue volume, and values for absolute and percent lesion volume and total brain volume change were generated. Spearman's rank correlations were computed to determine associations between neuroimaging and 6-month postinjury neuropsychological testing of attention (Symbol Digit Modalities Test [SDMT], oral [O] and written [W] versions), memory (Selective Reminding Test, total learning and delayed recall), and executive function (Trail Making Test Part B [TMT-B]).

RESULTS

The patients' mean age was 31.4 ± 14.0 years and their mean Glasgow Coma Scale score at admission was 7.9 ± 2.8. Lesions were predominantly localized to the frontal (11 lesions) and temporal (9 lesions) lobes. The average percent reductions in GRE and FLAIR volumes were 44.2% ± 46.1% and 80.5% ± 26.3%, respectively. While total brain and frontal lesion volumes did not correlate with brain atrophy, larger temporal lobe GRE and FLAIR volumes were associated with larger volumes of atrophy (GRE: acute, −0.87, p < 0.01, chronic, −0.78, p < 0.01; FLAIR: acute, −0.81, p < 0.01, chronic, −0.88, p < 0.01). Total percent volume change of GRE lesions correlated with TMT-B (0.53, p < 0.05) and SDMT-O (0.62, p < 0.05) scores. Frontal lobe lesion volume did not correlate with neuropsychological outcome. However, robust relationships were seen in the temporal lobe, with larger acute temporal lobe GRE volumes were associated with worse scores on both oral and written versions of the SDMT (SDMT-W, −0.85, p < 0.01; SDMT-O, −0.73, p < 0.05). Larger absolute change in temporal GRE volume was strongly associated with worse SDMT scores (SDMT-W, 0.88, p < 0.01; SDMT-O, 0.75, p < 0.05). The same relationships were also seen between temporal FLAIR lesion volumes and neuropsychological outcome.

CONCLUSIONS

Traumatic parenchymal hemorrhages are largely clustered in the frontal and temporal lobes, and significant residual blood products are present at 6 months postinjury, a potential source of ongoing secondary brain injury. Neuropsychological outcome is closely tied to lesion volume size, particularly in the temporal lobe, where larger GRE and FLAIR volumes are associated with more brain atrophy and worse SDMT scores. Interestingly, larger volumes of hemorrhage resorption were associated with worse SDMT and TMT-B scores, suggesting that the initial tissue damage had a lasting impact on attention and executive function.

Full access

Ravindra Arya, Jeffrey R. Tenney, Paul S. Horn, Hansel M. Greiner, Katherine D. Holland, James L. Leach, Michael J. Gelfand, Leonid Rozhkov, Hisako Fujiwara, Douglas F. Rose, David N. Franz and Francesco T. Mangano

OBJECT

Tuberous sclerosis complex (TSC) with medically refractory epilepsy is characterized by multifocal brain abnormalities, traditionally indicating poor surgical candidacy. This single-center, retrospective study appraised seizurerelated, neuropsychological, and other outcomes of resective surgery in TSC patients with medically refractory epilepsy, and analyzed predictors for these outcomes.

METHODS

Patients with multilesional TSC who underwent epilepsy surgery between 2007 and 2012 were identified from an electronic database. All patients underwent multimodality noninvasive and subsequent invasive evaluation. Seizure outcomes were classified using the International League Against Epilepsy (ILAE) scale. The primary outcome measure was complete seizure remission (ILAE Class 1). Secondary outcome measures included 50% responder rate, change in full-scale IQ, electroencephalography improvement, and reduction in antiepileptic drug (AED) burden.

RESULTS

A total of 37 patients with TSC underwent resective surgery during the study period. After a mean follow-up of 5.68 ± 3.67 years, 56.8% achieved complete seizure freedom (ILAE Class 1) and 86.5% had ILAE Class 4 outcomes or better. The full-scale IQ on follow-up was significantly higher in patients with ILAE Class 1 outcome (66.70 ± 12.36) compared with those with ILAE Class 2 or worse outcomes (56.00 ± 1.41, p = 0.025). In 62.5% of the patients with ILAE Class 2 or worse outcomes, the number of AEDs were found to be significantly reduced (p = 0.004).

CONCLUSIONS

This study substantiates the evidence for efficacy of resective epilepsy surgery in patients with bilateral multilesional TSC. More than half of the patients were completely seizure free. Additionally, a high proportion achieved clinically meaningful reduction in seizure burden and the number of AEDs.

Restricted access

Ravindra Arya, Francesco T. Mangano, Paul S. Horn, Sabrina K. Kaul, Serena K. Kaul, Celie Roth, James L. Leach, Michele Turner, Katherine D. Holland and Hansel M. Greiner

OBJECTIVE

There is emerging data that adults with temporal lobe epilepsy (TLE) without a discrete lesion on brain MRI have surgical outcomes comparable to those with hippocampal sclerosis (HS). However, pediatric TLE is different from its adult counterpart. In this study, the authors investigated if the presence of a potentially epileptogenic lesion on presurgical brain MRI influences the long-term seizure outcomes after pediatric temporal lobectomy.

METHODS

Children who underwent temporal lobectomy between 2007 and 2015 and had at least 1 year of seizure outcomes data were identified. These were classified into lesional and MRI-negative groups based on whether an epilepsy-protocol brain MRI showed a lesion sufficiently specific to guide surgical decisions. These patients were also categorized into pure TLE and temporal plus epilepsies based on the neurophysiological localization of the seizure-onset zone. Seizure outcomes at each follow-up visit were incorporated into a repeated-measures generalized linear mixed model (GLMM) with MRI status as a grouping variable. Clinical variables were incorporated into GLMM as covariates.

RESULTS

One hundred nine patients (44 females) were included, aged 5 to 21 years, and were classified as lesional (73%), MRI negative (27%), pure TLE (56%), and temporal plus (44%). After a mean follow-up of 3.2 years (range 1.2–8.8 years), 66% of the patients were seizure free for ≥ 1 year at last follow-up. GLMM analysis revealed that lesional patients were more likely to be seizure free over the long term compared to MRI-negative patients for the overall cohort (OR 2.58, p < 0.0001) and for temporal plus epilepsies (OR 1.85, p = 0.0052). The effect of MRI lesion was not significant for pure TLE (OR 2.64, p = 0.0635). Concordance of ictal electroencephalography (OR 3.46, p < 0.0001), magnetoencephalography (OR 4.26, p < 0.0001), and later age of seizure onset (OR 1.05, p = 0.0091) were associated with a higher likelihood of seizure freedom. The most common histological findings included cortical dysplasia types 1B and 2A, HS (40% with dual pathology), and tuberous sclerosis.

CONCLUSIONS

A lesion on presurgical brain MRI is an important determinant of long-term seizure freedom after pediatric temporal lobectomy. Pediatric TLE is heterogeneous regarding etiologies and organization of seizure-onset zones with many patients qualifying for temporal plus nosology. The presence of an MRI lesion determined seizure outcomes in patients with temporal plus epilepsies. However, pure TLE had comparable surgical seizure outcomes for lesional and MRI-negative groups.