Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Paul A. Garris x
Clear All Modify Search
Restricted access

Christoph J. Griessenauer, Su-Youne Chang, Susannah J. Tye, Christopher J. Kimble, Kevin E. Bennet, Paul A. Garris and Kendall H. Lee

Object

The authors previously reported the development of the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for measuring dopamine and suggested that this technology may be useful for evaluating deep brain stimulation–related neuromodulatory effects on neurotransmitter systems. The WINCS supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially resolved neurotransmitter measurements. The FSCV parameters used to establish WINCS dopamine measurements are not suitable for serotonin, a neurotransmitter implicated in depression, because they lead to CFM fouling and a loss of sensitivity. Here, the authors incorporate into WINCS a previously described N-shaped waveform applied at a high scan rate to establish wireless serotonin monitoring.

Methods

Optimized for the detection of serotonin, FSCV consisted of an N-shaped waveform scanned linearly from a resting potential of +0.2 to +1.0 V, then to −0.1 V and back to +0.2 V, at a rate of 1000 V/second. Proof-of-principle tests included flow injection analysis and electrically evoked serotonin release in the dorsal raphe nucleus of rat brain slices.

Results

Flow cell injection analysis demonstrated that the N waveform, applied at a scan rate of 1000 V/second, significantly reduced serotonin fouling of the CFM, relative to that observed with FSCV parameters for dopamine. In brain slices, WINCS reliably detected subsecond serotonin release in the dorsal raphe nucleus evoked by local high-frequency stimulation.

Conclusions

The authors found that WINCS supported high-fidelity wireless serotonin monitoring by FSCV at a CFM. In the future such measurements of serotonin in large animal models and in humans may help to establish the mechanism of deep brain stimulation for psychiatric disease.

Restricted access

Jonathan M. Bledsoe, Christopher J. Kimble, Daniel P. Covey, Charles D. Blaha, Filippo Agnesi, Pedram Mohseni, Sidney Whitlock, David M. Johnson, April Horne, Kevin E. Bennet, Kendall H. Lee and Paul A. Garris

Object

Emerging evidence supports the hypothesis that modulation of specific central neuronal systems contributes to the clinical efficacy of deep brain stimulation (DBS) and motor cortex stimulation (MCS). Real-time monitoring of the neurochemical output of targeted regions may therefore advance functional neurosurgery by, among other goals, providing a strategy for investigation of mechanisms, identification of new candidate neurotransmitters, and chemically guided placement of the stimulating electrode. The authors report the development of a device called the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for intraoperative neurochemical monitoring during functional neurosurgery. This device supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially and chemically resolved neurotransmitter measurements in the brain.

Methods

The FSCV study consisted of a triangle wave scanned between −0.4 and 1 V at a rate of 300 V/second and applied at 10 Hz. All voltages were compared with an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single carbon fiber (r = 2.5 μm) into a glass capillary and pulling the capillary to a microscopic tip by using a pipette puller. The exposed carbon fiber (that is, the sensing region) extended beyond the glass insulation by ~ 100 μm. The neurotransmitter dopamine was selected as the analyte for most trials. Proof-of-principle tests included in vitro flow injection and noise analysis, and in vivo measurements in urethane-anesthetized rats by monitoring dopamine release in the striatum following high-frequency electrical stimulation of the medial forebrain bundle. Direct comparisons were made to a conventional hardwired system.

Results

The WINCS, designed in compliance with FDA-recognized consensus standards for medical electrical device safety, consisted of 4 modules: 1) front-end analog circuit for FSCV (that is, current-to-voltage transducer); 2) Bluetooth transceiver; 3) microprocessor; and 4) direct-current battery. A Windows-XP laptop computer running custom software and equipped with a Universal Serial Bus–connected Bluetooth transceiver served as the base station. Computer software directed wireless data acquisition at 100 kilosamples/second and remote control of FSCV operation and adjustable waveform parameters. The WINCS provided reliable, high-fidelity measurements of dopamine and other neurochemicals such as serotonin, norepinephrine, and ascorbic acid by using FSCV at CFM and by flow injection analysis. In rats, the WINCS detected subsecond striatal dopamine release at the implanted sensor during high-frequency stimulation of ascending dopaminergic fibers. Overall, in vitro and in vivo testing demonstrated comparable signals to a conventional hardwired electrochemical system for FSCV. Importantly, the WINCS reduced susceptibility to electromagnetic noise typically found in an operating room setting.

Conclusions

Taken together, these results demonstrate that the WINCS is well suited for intraoperative neurochemical monitoring. It is anticipated that neurotransmitter measurements at an implanted chemical sensor will prove useful for advancing functional neurosurgery.

Restricted access

Filippo Agnesi, Susannah J. Tye, Jonathan M. Bledsoe, Christoph J. Griessenauer, Christopher J. Kimble, Gary C. Sieck, Kevin E. Bennet, Paul A. Garris, Charles D. Blaha and Kendall H. Lee

Object

In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time.

Methods

The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme–linked electrode to measure glutamate; and 3) a multiple enzyme–linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig.

Results

The WINCS, which is designed in compliance with FDA-recognized consensus standards for medical electrical device safety, successfully measured dopamine, glutamate, and adenosine, both in vitro and in vivo. The WINCS detected striatal dopamine release at the implanted CFM during DBS of the MFB. The DBS-evoked adenosine release in the rat thalamus and MCS-evoked glutamate release in the pig cortex were also successfully measured. Overall, in vitro and in vivo testing demonstrated signals comparable to a commercial hardwired electrochemical system for FPA.

Conclusions

By incorporating FPA, the chemical repertoire of WINCS-measurable neurotransmitters is expanded to include glutamate and other nonelectroactive species for which the evolving field of enzyme-linked biosensors exists. Because many neurotransmitters are not electrochemically active, FPA in combination with enzyme-linked microelectrodes represents a powerful intraoperative tool for rapid and selective neurochemical sampling in important anatomical targets during functional neurosurgery.