Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Paraskevi Vivian Papas x
Clear All Modify Search
Restricted access

Radek Kolecki, Vikalpa Dammavalam, Abdullah Bin Zahid, Molly Hubbard, Osamah Choudhry, Marleen Reyes, ByoungJun Han, Tom Wang, Paraskevi Vivian Papas, Aylin Adem, Emily North, David T. Gilbertson, Douglas Kondziolka, Jason H. Huang, Paul P. Huang and Uzma Samadani

OBJECTIVE

The precise threshold differentiating normal and elevated intracranial pressure (ICP) is variable among individuals. In the context of several pathophysiological conditions, elevated ICP leads to abnormalities in global cerebral functioning and impacts the function of cranial nerves (CNs), either or both of which may contribute to ocular dysmotility. The purpose of this study was to assess the impact of elevated ICP on eye-tracking performed while patients were watching a short film clip.

METHODS

Awake patients requiring placement of an ICP monitor for clinical purposes underwent eye tracking while watching a 220-second continuously playing video moving around the perimeter of a viewing monitor. Pupil position was recorded at 500 Hz and metrics associated with each eye individually and both eyes together were calculated. Linear regression with generalized estimating equations was performed to test the association of eye-tracking metrics with changes in ICP.

RESULTS

Eye tracking was performed at ICP levels ranging from −3 to 30 mm Hg in 23 patients (12 women, 11 men, mean age 46.8 years) on 55 separate occasions. Eye-tracking measures correlating with CN function linearly decreased with increasing ICP (p < 0.001). Measures for CN VI were most prominently affected. The area under the curve (AUC) for eye-tracking metrics to discriminate between ICP < 12 and ≥ 12 mm Hg was 0.798. To discriminate an ICP < 15 from ≥ 15 mm Hg the AUC was 0.833, and to discriminate ICP < 20 from ≥ 20 mm Hg the AUC was 0.889.

CONCLUSIONS

Increasingly elevated ICP was associated with increasingly abnormal eye tracking detected while patients were watching a short film clip. These results suggest that eye tracking may be used as a noninvasive, automatable means to quantitate the physiological impact of elevated ICP, which has clinical application for assessment of shunt malfunction, pseudotumor cerebri, concussion, and prevention of second-impact syndrome.