Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Orlando Diaz x
  • Refine by Access: all x
Clear All Modify Search
Full access

Leonardo Rangel-Castilla, Chandan Krishna, Richard Klucznik, and Orlando Diaz

Sinus pericranii (SP) is an uncommon and usually asymptomatic communication between intra- and extracranial venous drainage pathways in which blood flow can circulate bidirectionally through abnormal dilated veins through a skull defect. Diagnosis and evaluation of the venous drainage pattern is important if treatment is contemplated. Cerebral angiography with the use of Dyna CT can be helpful in the diagnosis of SP and its relationship with the skull defect. The authors report what is, to the best of their knowledge, the first case of SP treated by means of endovascular embolization with Onyx.

Restricted access

Leonardo Rangel-Castilla, Paul J. Holman, Chandan Krishna, Todd W. Trask, Richard P. Klucznik, and Orlando M. Diaz

Object

Spinal extradural (epidural) arteriovenous fistulas (AVFs) are uncommon vascular lesions of the spine with arteriovenous shunting located primarily in the epidural venous plexus. Understanding the complex anatomical variations of these uncommon lesions is important for management. The authors describe the different types of spinal extradural AVFs and their endovascular management using Onyx.

Methods

Eight spinal extradural AVFs in 7 patients were studied using MR imaging, spinal angiography, and dynamic CT (DynaCT) between 2005 and 2009. Special consideration was given to the anatomy, pattern of venous drainage, and mass effect upon the nerve roots, spinal cord, and vertebrae.

Results

The neuroaxial location of the 8 spinal extradural AVFs was lumbosacral in 1 patient, lumbar in 4 patients, thoracic in 2 patients, and cervical in 1 patient. Spinal extradural AVFs were divided into 3 types. In Type A spinal extradural AVFs, arteriovenous shunting occurs in the epidural space and these types have an intradural draining vein causing venous hypertension and spinal cord edema with associated myelopathy or cauda equina syndrome. Type B1 malformations are confined to the epidural space with no intradural draining vein, causing compression of the spinal cord and/or nerve roots with myelopathy and/or radiculopathy. Type B2 malformations are also confined to the epidural space with no intradural draining vein and no mass effect, and are asymptomatic. There were 4 Type A spinal extradural AVFs, 3 Type B1s, and 1 Type B2. Onyx was used in all cases for embolization. Follow-up at 6–24 months showed that 4 patients experienced excellent recovery. Three patients with Type A spinal extradural AVFs attained good motor recovery but experienced persistent bladder and/or bowel problems.

Conclusions

The current description of the different types of spinal extradural AVFs can help in understanding their pathophysiology and guide management. DynaCT was found to be useful in understanding the complex anatomy of these lesions. Endovascular treatment with Onyx is a good alternative for spinal extradural AVF management.

Restricted access

Jorge E. Alvernia, Emile Simon, Krishnakant Khandelwal, Cara D. Ramos, Eddie Perkins, Patrick Kim, Patrick Mertens, Raffaella Messina, Gustavo Luzardo, and Orlando Diaz

OBJECTIVE

The aim of this paper was to identify and characterize all the segmental radiculomedullary arteries (RMAs) that supply the thoracic and lumbar spinal cord.

METHODS

All RMAs from T4 to L5 were studied systematically in 25 cadaveric specimens. The RMA with the greatest diameter in each specimen was termed the artery of Adamkiewicz (AKA). Other supporting RMAs were also identified and characterized.

RESULTS

A total of 27 AKAs were found in 25 specimens. Twenty-two AKAs (81%) originated from a left thoracic or a left lumbar radicular branch, and 5 (19%) arose from the right. Two specimens (8%) had two AKAs each: one specimen with two AKAs on the left side and the other specimen with one AKA on each side. Eight cadaveric specimens (32%) had 10 additional RMAs; among those, a single additional RMA was found in 6 specimens (75%), and 2 additional RMAs were found in each of the remaining 2 specimens (25%). Of those specimens with a single additional RMA, the supporting RMA was ipsilateral to the AKA in 5 specimens (83%) and contralateral in only 1 specimen (17%). The specimens containing 2 additional RMAs were all (100%) ipsilateral to their respective AKAs.

CONCLUSIONS

The segmental RMAs supplying the thoracic and lumbar spinal cord can be unilateral, bilateral, or multiple. Multiple AKAs or additional RMAs supplying a single anterior spinal artery are common and should be considered when dealing with the spinal cord at the thoracolumbar level.

Restricted access

Visish M. Srinivasan, Aditya Srivatsan, Alejandro M. Spiotta, Benjamin K. Hendricks, Andrew F. Ducruet, Felipe C. Albuquerque, Ajit Puri, Matthew R. Amans, Steven W. Hetts, Daniel L. Cooke, Christopher S. Ogilvy, Ajith J. Thomas, Alejandro Enriquez-Marulanda, Ansaar Rai, SoHyun Boo, Andrew P. Carlson, R. Webster Crowley, Leonardo Rangel-Castilla, Giuseppe Lanzino, Peng Roc Chen, Orlando Diaz, Bradley N. Bohnstedt, Kyle P. O’Connor, Jan-Karl Burkhardt, Jeremiah N. Johnson, Stephen R. Chen, and Peter Kan

OBJECTIVE

Traditionally, stent-assisted coiling and balloon remodeling have been the primary endovascular treatments for wide-necked intracranial aneurysms with complex morphologies. PulseRider is an aneurysm neck reconstruction device that provides parent vessel protection for aneurysm coiling. The objective of this study was to report early postmarket results with the PulseRider device.

METHODS

This study was a prospective registry of patients treated with PulseRider at 13 American neurointerventional centers following FDA approval of this device. Data collected included clinical presentation, aneurysm characteristics, treatment details, and perioperative events. Follow-up data included degree of aneurysm occlusion and delayed (> 30 days after the procedure) complications.

RESULTS

A total of 54 aneurysms were treated, with the same number of PulseRider devices, across 13 centers. Fourteen cases were in off-label locations (7 anterior communicating artery, 6 middle cerebral artery, and 1 A1 segment anterior cerebral artery aneurysms). The average dome/neck ratio was 1.2. Technical success was achieved in 52 cases (96.2%). Major complications included the following: 3 procedure-related posterior cerebral artery strokes, a device-related intraoperative aneurysm rupture, and a delayed device thrombosis. Immediately postoperative Raymond-Roy occlusion classification (RROC) class 1 was achieved in 21 cases (40.3%), class 2 in 15 (28.8%), and class 3 in 16 cases (30.7%). Additional devices were used in 3 aneurysms. For those patients with 3- or 6-month angiographic follow-up (28 patients), 18 aneurysms (64.2%) were RROC class 1 and 8 (28.5%) were RROC class 2.

CONCLUSIONS

PulseRider is being used in both on- and off-label cases following FDA approval. The clinical and radiographic outcomes are comparable in real-world experience to the outcomes observed in earlier studies. Further experience is needed with the device to determine its role in the neurointerventionalist’s armamentarium, especially with regard to its off-label use.