Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Olivier Naggara x
Clear All Modify Search
Full access

Thomas Blauwblomme, Olivier Naggara, Francis Brunelle, David Grévent, Stéphanie Puget, Federico Di Rocco, Kevin Beccaria, Giovanna Paternoster, Marie Bourgeois, Manoelle Kossorotoff, Michel Zerah, Christian Sainte-Rose and Nathalie Boddaert


Arterial spin labeling (ASL)-MRI is becoming a routinely used sequence for ischemic strokes, as it quantifies cerebral blood flow (CBF) without the need for contrast injection. As brain arteriovenous malformations (AVMs) are highflow vascular abnormalities, increased CBF can be identified inside the nidus or draining veins. The authors aimed to analyze the relevance of ASL-MRI in the diagnosis and follow-up of children with brain AVM.


The authors performed a retrospective analysis of 21 patients who had undergone digital subtraction angiography (DSA) and pseudo-continuous ASL-MRI for the diagnosis or follow-up of brain AVM after radiosurgery or embolization. They compared the AVM nidus location between ASL-MRI and 3D contrast-enhanced T1 MRI, as well as the CBF values obtained in the nidus (CBFnidus) and the normal cortex (CBFcortex) before and after treatment.


The ASL-MRI correctly demonstrated the nidus location in all cases. Nidal perfusion (mean CBFnidus 137.7 ml/100 mg/min) was significantly higher than perfusion in the contralateral normal cortex (mean CBFcortex 58.6 ml/100 mg/min; p < 0.0001, Mann-Whitney test). Among 3 patients followed up after embolization, a reduction in both AVM size and CBF values was noted. Among 5 patients followed up after radiosurgery, a reduction in the nidus size was observed, whereas CBFnidus remained higher than CBFcortex.


In this study, ASL-MRI revealed nidus location and patency after treatment thanks to its ability to demonstrate focal increased CBF values. Absolute quantification of CBF values could be relevant in the follow-up of pediatric brain AVM after partial treatment, although this must be confirmed in larger prospective trials.

Restricted access

Sarah Stricker, Grégoire Boulouis, Sandro Benichi, Florent Gariel, Lorenzo Garzelli, Kevin Beccaria, Anais Chivet, Timothee de Saint Denis, Syril James, Giovanna Paternoster, Michel Zerah, Marie Bourgeois, Nathalie Boddaert, Francis Brunelle, Philippe Meyer, Stephanie Puget, Olivier Naggara and Thomas Blauwblomme


Hydrocephalus is a strong determinant of poor neurological outcome after intracerebral hemorrhage (ICH). In children, ruptured brain arteriovenous malformations (bAVMs) are the dominant cause of ICH. In a large prospective cohort of pediatric patients with ruptured bAVMs, the authors analyzed the rates and predictive factors of hydrocephalus requiring acute external ventricular drainage (EVD) or ventriculoperitoneal shunt (VPS).


The authors performed a single-center retrospective analysis of the data from a prospectively maintained database of children admitted for a ruptured bAVM since 2002. Admission clinical and imaging predictors of EVD and VPS placement were analyzed using univariate and multivariate statistical models.


Among 114 patients (mean age 9.8 years) with 125 distinct ICHs due to ruptured bAVM, EVD and VPS were placed for 55/125 (44%) hemorrhagic events and 5/114 patients (4.4%), respectively. A multivariate nominal logistic regression model identified low initial Glasgow Coma Scale (iGCS) score, hydrocephalus on initial CT scan, the presence of intraventicular hemorrhage (IVH), and higher modified Graeb Scale (mGS) score as strongly associated with subsequent need for EVD (all p < 0.001). All children who needed a VPS had initial hydrocephalus requiring EVD and tended to have higher mGS scores.


In a large cohort of pediatric patients with ruptured bAVM, almost half of the patients required EVD and 4.4% required permanent VPS. Use of a low iGCS score and a semiquantitative mGS score as indicators of the IVH burden may be helpful for decision making in the emergency setting and thus improve treatment.